Viscous corrections to photon production channels in QGP

Sigtryggur Hauksson

McGill University

In collaboration with C. Shen, S. Jeon, C. Gale

Hard Probes 2016, Wuhan, September 242016

Introduction

■ Need both shear and bulk viscosity to fit hadronic data.

$$
f_{\text {eq }} \longrightarrow f_{\text {eq }}+\delta f_{\text {shear }}+\delta f_{\text {bulk }}
$$

Ryu, Paquet et al. arXiv: 1502.01675

- For accurate modelling of photon production at RHIC and LHC we need to include δf.
- Might hope to get information about the viscosity of QGP through photons.

Introduction

Leading order photon production for QGP in equilibrium:

2 to 2 scattering

Bremsstrahlung
Pair annihilation
LPM effect

Calculations so far:	Equilibrium	Shear correction	Bulk correction
2 to 2 scattering	Yes [1]	Yes [2]	Forward scattering [3]
Inelastic channels	Yes [4]	No	No

[1] Baier, Nakkagawa, Niegawa, Redlich '92; Kapusta, Lichard, Seibert '91
[2] Schenke, Strickland hep-ph/0611332; Shen, Paquet, Heinz, Gale arXiv:1410.3404
[3] Paquet, Shen et al. arXiv:1509.06738
[4] Arnold, Moore, Yaffe hep-ph/0109064

Outline

Bulk viscous correction to 2 to 2 scattering Rate calculation
Folding with hydro simulations

Viscous correction to inelastic channels The same diagrams contribute out of equilibrium as in equilibrium

Rate calculation

Rate of photon production is related to the 12 photon polarization tensor.

$$
k \frac{d R}{d^{3} k} \sim\left(i \Pi_{12}\right)^{\mu}{ }_{\mu}
$$

Use cutting rules to get
$k \frac{d R}{d^{3} k} \sim \sum_{\text {channels }} \int_{P} \int_{P^{\prime}} \int_{K^{\prime}} \delta^{(4)}\left(P+P^{\prime}-K-K^{\prime}\right)|\mathcal{M}|^{2} f(P) f\left(P^{\prime}\right)\left(1 \pm f\left(K^{\prime}\right)\right)$

The integrals are evaluated numerically.
$\delta f_{\text {bulk }}(P)=f_{\text {eq }}\left(1 \pm f_{\text {eq }}\right)\left(E-\frac{m_{\mathrm{th}}^{2}}{E}\right) \frac{\Pi}{15(\epsilon+P)\left(\frac{1}{3}-c_{s}^{2}\right)}, \quad E=\sqrt{p^{2}+m_{\mathrm{th}}^{2}}$

Infrared divergences

Run into infrared divergences because of massless particles.

Fix by including thermal masses for $|\mathbf{q}| \leq q_{\text {cut }}$.

Use the method of hard thermal loops (HTL), $L \gg Q$, including bulk viscous correction.

The cut between the hard and the soft part should obey

$$
g T \ll q_{\mathrm{cut}} \ll T
$$

Results

$$
k \frac{d R}{d^{3} k}=T^{2}\left(\Gamma_{\mathrm{eq}}+\frac{\Pi}{15(\epsilon+P)\left(\frac{1}{3}-c_{s}^{2}\right)} \Gamma_{\mathrm{bulk}}\right)
$$

At low g a wide range of $q_{\text {cut }}$ gives the same answer.
At high g we choose the minimum.

Results

Ratio of $\Gamma_{\text {bulk }}$ for forward scattering and full calculation

The full calculation and the forward approximation are very different at low k / T but similar at high k / T.

Results

Fold the rates with a hydro evolution:

$$
k \frac{d N_{\text {thermal }}^{\gamma}}{d^{3} k}=\int_{T>T_{\text {freezeout }}} d^{4} x\left[\left.k \frac{d R^{\gamma}}{d^{3} k}\left(T(x), E_{k}\right)\right|_{E_{k}=k \cdot u(x)}\right]
$$

Elliptic flow for Au-Au collisions at $200 \mathrm{GeV}, 0-40 \%$:

Direct photons, only changing 2 to 2 scattering in QGP

The bulk correction is big at higher p_{T}.

Results

Why does bulk viscosity give a bigger correction at high p_{T} than at low p_{T} ?

Shen et al. arXiv:1308.2440

Ryu et al. arXiv:1502.01675

At low p_{T} equilibrium rate and bulk correction come from the same cells.

At high p_{T} bulk correction comes from cells with higher flow.

Outline

Bulk viscous correction to 2 to 2 scattering

 Rate calculation Folding with hydro simulationsViscous correction to inelastic channels The same diagrams contribute out of equilibrium as in equilibrium

Equilibrium case

Arnold, Moore, Yaffe hep-ph/0109064
Arnold, Moore, Yaffe hep-ph/0111107
ra basis: $\quad \phi_{r}=\frac{1}{2}\left(\phi_{1}+\phi_{2}\right), \quad \phi_{a}=\phi_{1}-\phi_{2}$

$$
\begin{aligned}
& \frac{r a}{\partial r} \frac{a r}{\partial r} \frac{r r}{\partial a} \frac{a \operatorname{ar}}{\partial \mathrm{qa}} \\
& \left\{\begin{aligned}
G_{a a} & =0 \\
G_{a r} & =G_{\mathrm{Adv}} \\
G_{r a} & =G_{\text {Ret }} \\
G_{r r} & =\left(\frac{1}{2}+n_{B}\left(P^{0}\right)\right)\left(G_{\text {Ret }}-G_{\text {Adv }}\right)
\end{aligned}\right.
\end{aligned}
$$

For gluon momentum $P \sim g T$ we get $n_{B}\left(P^{0}\right)=\frac{1}{e^{P^{0} / T}-1} \sim g^{-1}$ so $G_{r r} \sim g^{-3}$

Pinching poles:

$$
\sim \int d P^{0} G_{\operatorname{Ret}}(P+K) G_{\operatorname{Adv}}(P) \sim g^{-2}
$$

Equilibrium case

Need soft gluons.
Need quarks that are almost collinear to photons and almost on shell.

Our building blocks are

$$
\begin{aligned}
& \mathcal{Z}^{r} \\
& \mathcal{O}^{2}
\end{aligned}
$$

Also have

Get infinitely many diagrams that we need to sum up.
They better have a simple structure!

Equilibrium case

aa quark lines vanish and ra and ar lines are simple.

AMY used the Kubo-Martin-Schwinger relation for four-point functions.

where

Equilibrium case

aa quark lines vanish and ra and ar lines are simple.

AMY used the Kubo-Martin-Schwinger relation for four-point functions.

where

Equilibrium case

aa quark lines vanish and ra and ar lines are simple.

AMY used the Kubo-Martin-Schwinger relation for four-point functions.

where

Equilibrium case

aa quark lines vanish and ra and ar lines are simple.

AMY used the Kubo-Martin-Schwinger relation for four-point functions.

where

Equilibrium case

aa quark lines vanish and ra and ar lines are simple.

AMY used the Kubo-Martin-Schwinger relation for four-point functions.

where

Equilibrium case

aa quark lines vanish and ra and ar lines are simple.

AMY used the Kubo-Martin-Schwinger relation for four-point functions.

where

Out-of-equilibrium case

Without using the KMS condition we derived that out of equilibrium

where

Exactly the same diagrams contribute in and out of equilibrium.

Need the quark and gluon self energies.

The diagrams can be summed up giving an integral equation that needs to be solved numerically.

Out-of-equilibrium case

Need to check that we have the same power counting scheme out of equilibrium.

Calculations so far show that the power counting scheme is still valid for $\delta f \sim f_{\text {eq }}$.

We can always write

aa quark lines vanish and ra and ar lines are simple

Out-of-equilibrium case

Need to check that we have the same power counting scheme out of equilibrium.

Calculations so far show that the power counting scheme is still valid for $\delta f \sim f_{\text {eq }}$.

We can always write

aa quark lines vanish and ra and ar lines are simple

Out-of-equilibrium case

$$
\xrightarrow{r} \mathrm{r}=\left(\frac{1}{2}+\frac{\Sigma^{<}}{\Sigma>-\Sigma^{<}}\right)(\xrightarrow{r})
$$

Thus the rr quark lines are a telescoping series. In the end we only get one ra and one ar quark line.

$$
\begin{aligned}
& r \quad \begin{array}{r}
r \\
3 r
\end{array} \\
& =\frac{r a r r}{\partial}+\frac{r a r}{\partial} \\
& =\left(\frac{1}{2}+\frac{\Sigma^{<}}{\Sigma>-\Sigma^{<}}\right)\left[\frac{r a r a}{\beta}-\frac{r a a r}{\beta}+\frac{r a \operatorname{ar}}{\beta}-\frac{a r a r}{\beta}\right] \\
& =\left(\frac{1}{2}+\frac{\Sigma^{<}}{\Sigma^{2}-\Sigma^{<}}\right)\left[\frac{r a r \quad a}{\partial}-\frac{\text { a } r a r}{\partial}\right]
\end{aligned}
$$

Conclusion

■ Calculated bulk viscous correction to 2 to 2 scattering in QGP

■ Big effect on photon v_{2} at higher p_{T}

- Out of equilibrium we have the same power counting scheme as in the equilibrium AMY calculation.
The same diagrams contribute.

■ Viscous corrections take photon calculations to a new level of precision.

- Paves the way for viscous corrections to jet-medium interaction.

Backup slides

Approximations and formalism

Perturbative QCD where $\alpha_{E M} \ll \alpha_{s} \ll 1$.

Infinite medium with constant $T, \Pi, \pi^{\mu \nu} \ldots$

Real time formalism:

$$
S_{21}(P)=\not P 2 \pi i \delta\left(P^{2}\right)\left(-\theta\left(P^{0}\right)+f(P)\right)
$$

where $f=f_{\text {eq }}+\delta f_{\text {shear }}+\delta f_{\text {bulk }}$

Expand up to first order in δf.

$$
\delta f_{\mathrm{bulk}}(P)=f_{\mathrm{eq}}\left(1 \pm f_{\mathrm{eq}}\right)\left(E-\frac{m_{\mathrm{th}}^{2}}{E}\right) \frac{\Pi}{15(\epsilon+P)\left(\frac{1}{3}-c_{s}^{2}\right)}, \quad E=\sqrt{p^{2}+m_{\mathrm{th}}^{2}}
$$

Is δf too big in hydro?

δf suppression: If $\delta f>f_{\text {eq }}$ in some cell we put $\delta f=f_{\text {eq }}$.

At experimentally interesting p_{T} this doesn't make a big difference.

Need to check that we have the same power counting scheme out of equilibrium.

The position of the pinching poles gets shifted because of viscous corrections.

In the gluon propagator

$$
n_{B} \quad \longrightarrow \quad \frac{\Pi^{<}}{\Pi^{>}-\Pi^{<}}
$$

where

$$
\Pi^{<}=\Pi_{\mathrm{eq}}^{<}+\delta \Pi^{<}
$$

Calculations so far show that the power counting scheme is still valid for $\delta f \sim f_{\text {eq }}$.

More complicated cancellation

$$
\xrightarrow{r \longrightarrow r}=\left(\frac{1}{2}-\frac{\Sigma^{<}}{\Sigma^{>}-\Sigma^{<}}\right)(\stackrel{\mathrm{a}}{\longrightarrow}-\stackrel{\mathrm{a}}{\longrightarrow})
$$

Thus the rr quark lines are a telescoping series.

$$
\begin{aligned}
& \begin{array}{l}
r \quad \alpha r \quad r \\
\hline \quad r
\end{array}
\end{aligned}
$$

Some formulas

$$
v_{n}\{S P\}=\frac{\left\langle v_{n}^{\gamma} v_{n}^{h} \cos n\left(\Psi_{n}^{\gamma}-\Psi_{n}^{h}\right)\right\rangle}{\sqrt{\left\langle\left(v_{n}^{h}\right)^{2}\right\rangle}}
$$

With experimental data

Direct photons, only changing 2 to 2 scattering in QGP, 20-40\%

With experimental data

Direct photons, only changing 2 to 2 scattering in QGP, $0-20 \%$

