24 September 2016, Wuhan, China 8th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

W and Z boson production in 5.02 TeV *pp* and *p*+Pb collisions with ATLAS

Mirta Dumancic (for the ATLAS Collaboration)

Weizmann Institute of Science

W and Z physics at LHC

24 September 2016, Wuhan

W and Z production at 5.02 TeV

W and Z physics at LHC

24 September 2016, Wuhan

W and Z physics at LHC

24 September 2016, Wuhan

ATLAS detector at LHC

Zboson in p+Pb @ 5.02 TeV

- Z boson yields asymmetric in y
- shape better described with models containing nuclear PDF modification

Zboson in p+Pb @ 5.02 TeV

Phys.Rev. C92 (2015) 35 ATLAS enhancement p+Pb 2013, L _ = 29 nb⁻¹ 30 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ dσ(Z→ II)/dy_z* [nb] 25 20 15 CT10 (NLO) 10 CT10+EPS09 (NLO) STW2008 (NNLO) 5 1.5 1.0 Data / CT10 (NLO) 0.5 Data/Model 0.2 0.2 .5 Data / CT10+EPS09 (NLO) 1.5 1.0 Data / MSTW2008 (NNLO) 0.5 -2 0 2

- Z boson yields asymmetric in y
- shape better described with models containing nuclear PDF modification
- models with CT10 PDF set underestimate total cross section

y_Z^*	[-2, 0]	[0,2]	[-3, 2]	[-3.5, 3.5]
$Z \rightarrow \mu \mu$	$54.2 \pm 1.6 \pm 1.3$	$45.3 \pm 2.1 \pm 0.9$	$118.2 \pm 3.3 \pm 2.6$	N/A
$Z \rightarrow ee$	$55.1 \pm 1.8 \pm 5.9$	$46.5 \pm 2.2 \pm 5.0$	$121 \pm 3 \pm 13$	$143 \pm 5 \pm 17$
$Z \to \ell \ell$	$54.4 \pm 1.3 \pm 1.4$	$45.9\pm1.4\pm1.4$	$119.3 \pm 2.2 \pm 3.4$	$139.8 \pm 4.8 \pm 6.2$
CT10 (NLO)	47.4 ± 0.9	46.8 ± 0.9	110.8 ± 2.9	132.2 ± 3.3
CT10+EPS09 (NLO)	48.7 ± 1.0	43.5 ± 1.1	108.6 ± 3.1	127.4 ± 3.6
MSTW2008 (NNLO)	$48.3^{+1.2}_{-0.9}$	$47.9^{+1.2}_{-0.9}$	$113.5^{+2.8}_{-2.2}$	$135.2^{+3.4}_{-2.7}$

... or overal normalisation shift and deficit?

Wboson in p+Pb @ 5.02 TeV

ATLAS-CONF-2015-056

- isospin effect: W⁺ bosons having on average a higher fraction of the proton momentum
- W⁻ boson measurement points are higher than the model prediction
- lepton charge asymmetry: data are somewhat lower than the calculation on the Pb-going side
- consistent with Z results

$$A_{\mu} = \frac{dN_{W}^{+}/d\eta - dN_{W}^{-}/d\eta}{dN_{W}^{+}/d\eta + dN_{W}^{-}/d\eta}$$
charge asymmetry

Centrality and nPDF effects

ATLAS-CONF-2015-056

• W boson pseudo-rapidity differential yields in centrality classes indicate centrality dependence of the modification

Centrality and nPDF effects

- rapidity differential yields in different centrality classes show common trend:
 asymmetry and *enhancement*
- ratio of central to most peripheral yields seems to exhibit linear behaviour
- Z boson measurements suggest centrality dependance of PDF modification

pp reference data @ 5.02 TeV

3/13 3/

ATLAS

Run: 267638 Event: 242090708 2015-06-14 01:01:14 CEST

Zboson in pp@5.02 TeV

Event selection

- 2 high quality reconstructed muons with $p_T > 20$ GeV and inside $|\eta| < 2.4$
- requiring low level of multi-jet background (*isolation*)
- opposite charge pairs with invariant mass between 66 and 116 GeV
- 7293 Z boson candidates
- total (24.7 ± 1.3) pb⁻¹ of data

Signal and background

Zboson in pp@5.02 TeV

Event selection

- 2 high quality reconstructed muons with $p_T > 20$ GeV and inside $|\eta| < 2.4$
- requiring low level of multi-jet background (*isolation*)
- opposite charge pairs with invariant mass between 66 and 116 GeV
- 7293 Z boson candidates
- total (24.7 ± 1.3) pb⁻¹ of data

Signal and background

Zboson in pp@5.02 TeV

Corrections

Systematics

- fiducial space: $|y^{Z}| < 2.5$, 66 GeV < m_Z < 116 GeV
- data unfolded with corrections from simulation
- corrections differential in rapidity

Source	Uncertainty range [%]	
Muon Identification & Reconstruction	1-1.5	
Muon Trigger	1-1.2	
Muon Isolation	0.05-1.6	
Background	<0.1	
Unfolding	0.2-4	
Luminosity	5.4	

Integrated cross section @ 5.02 TeV

- $\sigma_{Z(\text{fiducial})} = 590 \pm 9(\text{stat}) \pm 11(\text{sys}) \pm 32(\text{lumi}) \text{ pb}$
- NNLO calculations including CT14 PDF set: 573 ^{+13.94}_{-15.96} pb
- models with CT10 PDF sets underestimate the integrated cross section by ~9%

Differential cross section @ 5.02 TeV

- rapidity differential cross section in agreement with CT14 @ NNLO
- *pp* reference for *Z* boson
 p+Pb results

Is there nuclear modification in p+A system seen by the EW probe?

Nuclear modification factor

ATLAS-CONF-2016-107

$$R_{pPb} = \frac{d\sigma^{pPb}/dy}{A_{Pb} d\sigma^{pp}/dy}$$

- relative suppression in forward rapidity (low Bjorken x of Pb)
- consistent with nuclear PDF modification

Nuclear modification factor

ATLAS-CONF-2016-107

 isospin effects on the Pb going side (negative rapidity) but not describing deficit in positive rapidity

What seemed to be enhancement was rather scale offset and deficit...

R_{pPb} in centrality classes

R_{pPb} in centrality classes

R_{pPb} in centrality classes

Summary

- measurements of Z and W boson production provide benchmark for understanding centrality and PDF modification in collisions with heavy nuclei
- Z boson fiducial cross section measured in pp system at 5.02 TeV
- models with new CT14 PDF set better describe Z boson yields
- new pp reference data improves our understanding of centrality dependant nPDF
- measured R_{pA} indicates presence of nuclear modification that increases with centrality of the p+A collision

Anticipating Pb+Pb results

...new Pb+Pb measurements coming soon!

Backup

Zboson decay in ATLAS @ 5.02 TeV

24 September 2016, Wuhan

Geometry and centrality

- FCal energy as a measure of collision activity → data is divided into centrality classes
- geometrical quantities from simulation
- Z boson production rate expected to scale with the overlap of the two colliding nuclei ($\langle T_{AB} \rangle$)

Centrality in p+Pb system

- challenging due to asymmetry and less activity compared to Pb+Pb system
- centrality bias correction applied for the correlation of hard process and underlying event used for determining collision centrality
- several geometrical models: Glauber and Glauber-Gribov color fluctuation model

EW boson scaling in p+Pb system

- uncorrected Z and W boson yields grow with centrality
- Gribov color fluctuations or centrality bias correction lead to well understood picture of binary scaling

24 September 2016, Wuhan