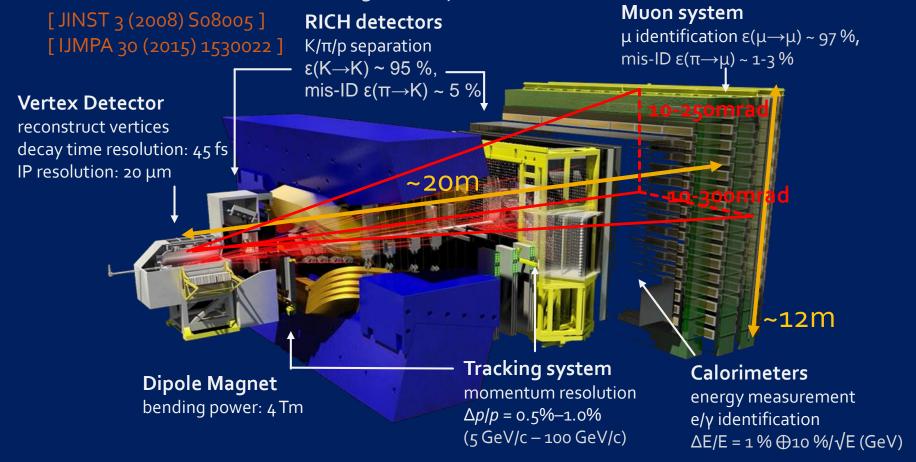


Quarkonium Production in pPb and PbPb collisions with LHCb

Burkhard Schmidt (CERN) on behalf of the LHCb collaboration

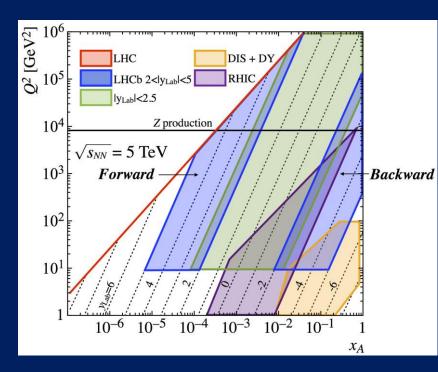

THCP Overview

- > Introduction
 - > LHCb detector and physics motivation
- Quarkonium Production in pPb collisions
 - \triangleright Cold Nuclear Matter effects in J/ψ , $\psi(2S)$ and Y-production
- > First look at quarkonium production in PbPb collisions
 - \triangleright Centrality determination and first look at J/ψ -production
- Prospects for the pPb run in November 2016
- Conclusions

LHCb Detector

- Single arm spectrometer in the forward direction
 - designed for b-physics but capable to address many other topics ...
 - fully instrumented in its angular acceptance
 - forward and backward coverage for asymmetric beams

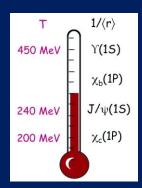
Experimental approach


- LHCb can make valuable contributions to the study of proton nucleus and nucleus-nucleus collisions in the forward region with a precision not accessible to other experiments:
 - Good vertexing with possibility to separate prompt and from B decay products

• Precise tracking down to very low p_T and excellent particle identification,

including hadronic decays

• Example:


- PDFs can be probed via quarkonia, EW and Drell-Yan measurements
- Contribution from two x-regions for Q^2 and y ($x_{1,2} = e^{\pm y} Q / 2\sqrt{s}$)
- Complementary measurement to ATLAS and CMS

Motivation for Heavy Flavour studies

- Heavy flavour / quarkonium production are an important probe
 - > to disentangle QGP effects from Cold-Nuclear-Matter (CNM) effects
 - > to understand energy-loss and medium-transport mechanisms in nucleus collisions and sequential melting for quarkonia.

> Different kinds of CNM effects can be considered:

1. Initial state:

- Nuclear shadowing (= Gluon shadowing at the LHC) [K.J. Escola, JHEP 0904 065]
- Gluon saturation (described in CGC model) [D. Kharzeev, Nucl. Phys A77 (2006) 40]
- Radiative energy loss

[S. Gavin et al. Phys.Rev.Lett 68 (1992) 1834]

Cronin effects

[J.W. Cronin et al. Phys. Rev. D 11 (1975) 3105]

Final state:

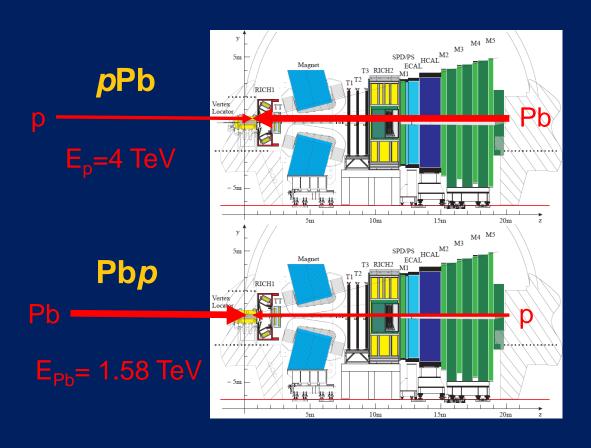
- Nuclear absorption (small at the LHC)
- Radiative Energy Loss
- Comovers

[R. Vogt, Nucl. Phys. A700 (2002) 539]

[R. Vogt, Phys. Rev C 61 (2000) 035203]

[E. Ferreiro, Phys. Lett B749 (2015) 98]

3. Coherent parton energy-loss:


Multiple elastic scatterings

[F. Arleo et al. Phys. Rev Lett 109 (2012) 122301]

Quarkonium production in proton-lead collisions

Setup for Proton-Ion physics

Rapidity coverage

pp: 2 < y < 5

Forward production

y = 0.47 in lab

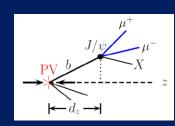
*p*Pb: 1.5 < y < 4.5

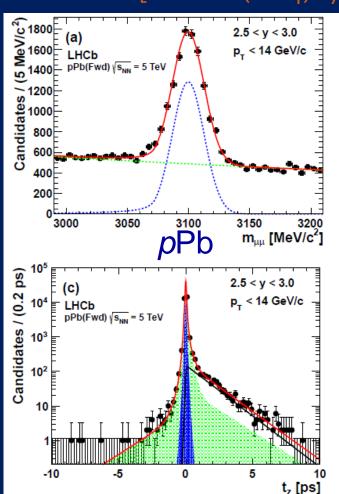
Data taken in 2013: ~1.1/nb

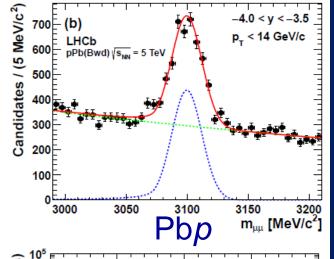
Backward production

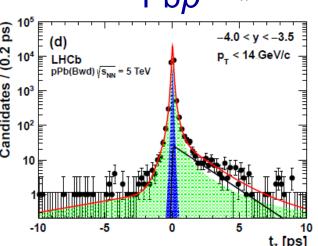
y = -0.47 in lab

Pbp: -5.5 < y < -2.5


Data taken in 2013 ~0.5/nb


- Common range for measurements: 2.5 < |y| < 4</p>
- Center-of-mass energy : $\sqrt{s_{NN}} \approx 5 \text{TeV}$




$\frac{LHCb}{HCS}$ J/ψ & ψ (2S) production in pPb collisions

Prompt J/ψ and J/ψ from b are extracted by simultaneous fit of mass and pseudo-proper time : $t_z = (Z_{I/\psi} - ZPV) \times M_{I/\psi} / p_Z$ [JHEP 02 (2014) 072]

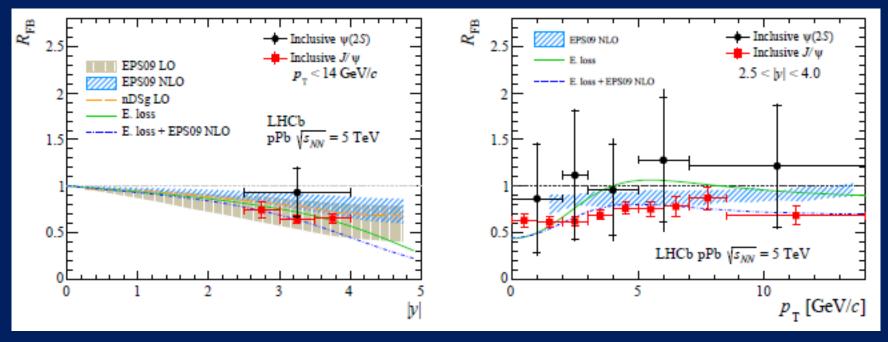
Mass distributions:

- Signal: Crystal-Ball fct.
- exponential - Bkg:
- red line: sum of all contr.

t_z distributions:

- Signal:
 - $\delta(t_z)$ for prompt J/ψ expo. for b-component
- Bkg: empirical function from sideband

blue line: prompt J/ψ black line: J/ψ from b Green hatched: comb. bkg sum of all contr. red line:



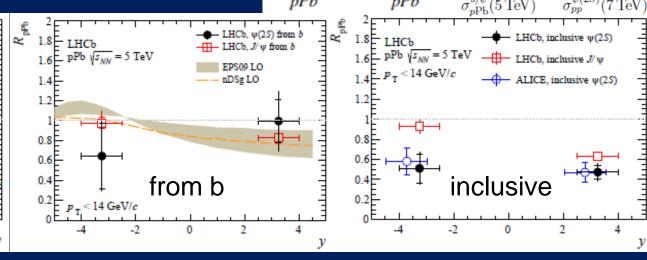
J/ψ and ψ (2S) forward-backward ratio

$$R_{FB}(/y/) = \frac{d\sigma_{pA}}{d\sigma_{Ap}}/dy$$

determined in common range 2.5 < |y| < 4.0

Part of experimental and theoretical uncertainties cancel [JHEP 1603 (2016) 133]

- Large experimental uncertainties for ψ (2S)
 - \rightarrow more statistics needed to get a trend (R_{FB} of inclusive ψ (2S) compatible both with unity and with suppression of inclusive J/ ψ)



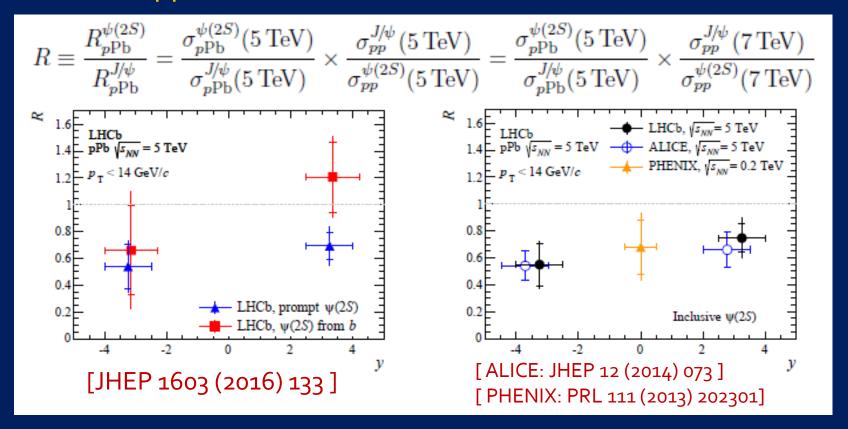
 $pPb \sqrt{s_{NN}} = 5 \text{ TeV}$

J/ψ and ψ (2S) modification factor

$$R_{pA}(y) = \frac{1}{A} \frac{d\sigma_{pA}/dy}{d\sigma_{pp}/dy}$$

- determined in overlap region 2.5 < |y| < 4.0
- J/ψ cross-section in pp collisions at 5 TeV from interpolation of measurements at 2.76, 7 and 8 TeV
- R_{pPb} for $oldsymbol{\psi}$ (2S) is calculated from using:

[JHEP 1603 (2016) 133]

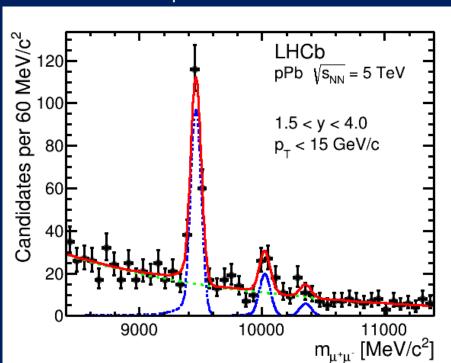

[ALICE: JHEP 12 (2014) 073]

- Prompt ψ(2S) more suppressed than prompt J/ψ
- Energy loss + shadowing don't explain the ψ(2S) suppression in the backward region. Do other mechanisms like comovers play a role?
- Suppression of $\psi(2S)$ from b consistent with that of J/ψ from b
- Suppression of inclusive $\psi(2S)$ consistent with ALICE results

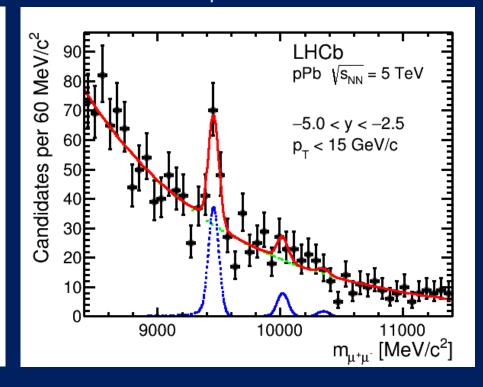
ψ (2S) relative suppression wrt J/ψ

Relative suppression is calculated as:

- Intriguing stronger suppression of prompt ψ(2S) than that of prompt J/ψ
- Expect similar suppression for $\psi(2S)$ from b and J/ψ from b
 - > R compatible with 1 within large uncertainties
- Results for inclusive $\psi(2S)$ compatible with ALICE measurement

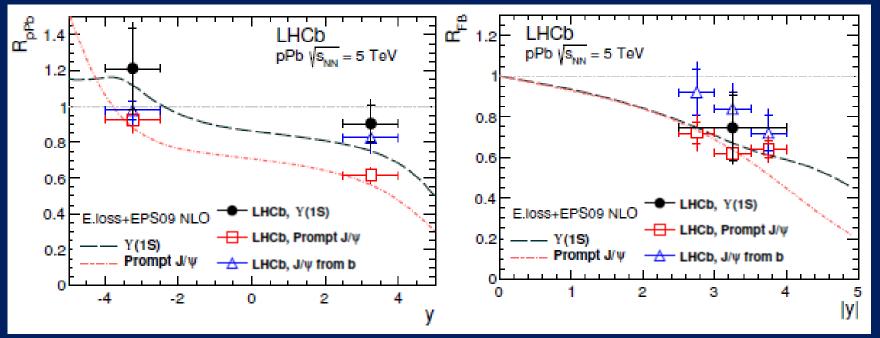

$\Upsilon(nS)$ - production in pPb collisions

reconstruct Υ -states in di-muon channel


- forward 1.5 < y < 4.0 and backward -5.0 < y < -2.5; $p_T < 15 \, GeV/c$
- Mass model: three Crystal-Balls for signal and exponential background
- low statistics → no differential measurement

[JHEP 07 (2014) 094]

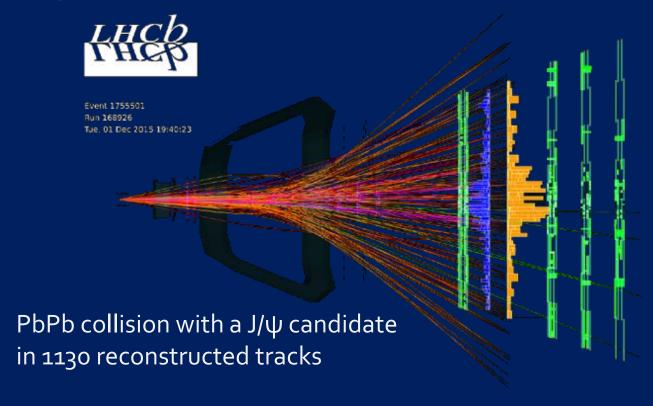
Forward production


Backward production

$Y_{(1S)}$ – production: CNM effects

• Measurement of R_{pPb} and R_{FB} with Υ (1S) complementary to J/ Ψ (probing different x_A) [JHEP 07 (2014) 094]

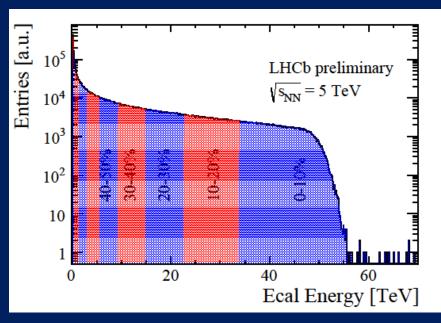
- Cold nuclear effects are also visible with $\Upsilon(1S)$ production
 - > Suppression in forward region smaller than for J/Ψ
 - Possible enhancement in backward region due to anti-shadowing
 - Good agreement for prediction with energy loss and shadowing (EPSo9 NLO)

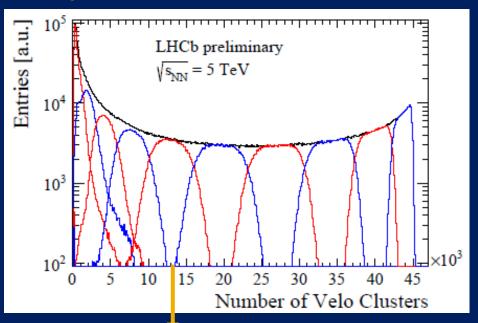

First Look at Quarkonium production in lead-lead collisions

Lead-lead collisions in LHCb

- First participation in PbPb running in Nov/Dec 2015
 - 24 colliding bunches; integrated luminosity ~5 / μb
 - all inelastic interactions recorded with minimum-bias trigger,
 no global event cut

 important for centrality determination



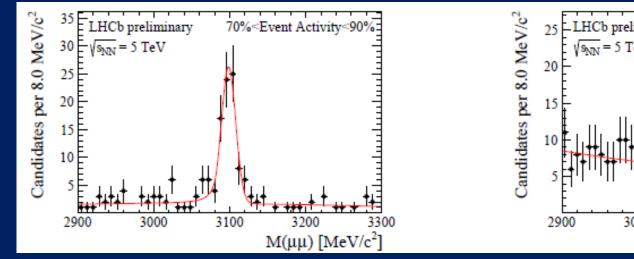

Centrality determination

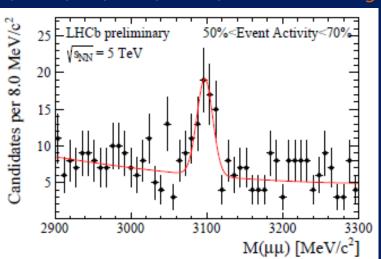
- Use quantity which doesn't saturate for centrality measurement
 - ➤ Energy deposition in the electromagnetic (ECAL) / hadronic (HCAL) calorimeters seems to be a good centrality estimator
 - First step: Event classification in terms of ECAL activity classes

 Tracking may be possible up to 15'000 clusters in VELO

→~ 50-60% ECAL event activity class

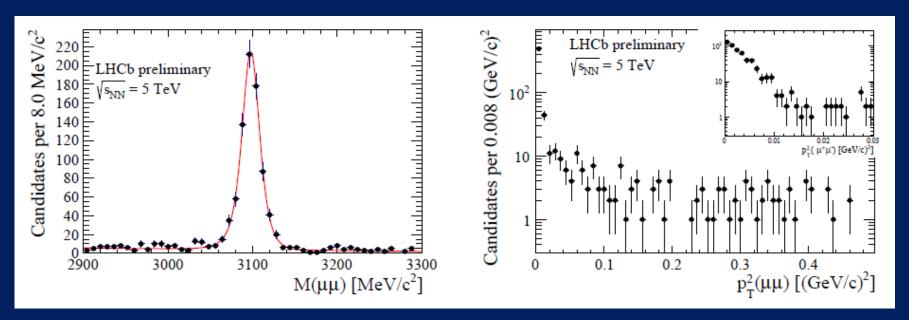
https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015




J/ψ production in PbPb collisions

- J/ψ carries information about the system created in PbPb collision
 - > a probe for QGP formation
 - > plan to measure R_{AA} , using the result in pp at $\sqrt{s=5}$ TeV
- Analysis status:
 - > tracking efficiency difficult to estimate due to low statistics & high occupancy
 - > plan to use data driven methods to determine tracking and PID efficiency

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015



Clear signals also for 50-70% event activity

Coherent photoproduction of J/ψ in PbPb

- Also ultra peripheral collisions are of great interest
 - ➤ QED with extreme field-strength and large cross-sections Events containing only 2 long tracks in the spectrometer

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

- Very clean signature with very soft transverse momentum spectrum
- Ongoing studies will benefit from new high rapidity HERSCHEL detector
 - rapidity coverage 5 < η < 9</p>
 - Possibility to define large rapidity gaps

Prospects for the proton-lead run in November 2016

Prospects for 2016 pPb run

- Intend to do fixed target studies during pPb run at √s_{NN} = 5 TeV
 - ightharpoonup Measure σ (p He $ightharpoonup \overline{p}$ X) to clarify uncertainty on secondary production of \overline{p} in the interstellar medium (astrophysical interest)
- Requested L_{int} of 2o/nb at √s_{NN} ~ 8 TeV
 - shared between both beam configurations pPb & Pbp

Channel	2013 yields	Yields expected in 2016 with $20 \mathrm{nb}^{-1}$
$\Upsilon(3S) \to \mu^+ \mu^-$	_	300
$\psi(2S) \to \mu^+ \mu^-$	500	10000
$Z \to \mu^+ \mu^-$	12	250
Associated $J/\psi - D^0$ production	_	100
Drell Yan	_	1000

- > Statistic would allow to achieve same precision on R_{FB} in $\psi(2S)$ as for J/ψ
- Measurement of R_{pPb} for all upsilon states, including Y(3S)
- ➤ Improved precision on Z-production → constrain nPDF
- Associated HF production in pPb to study single- and double- parton scattering

J/ψ over Drell-Yan measurement

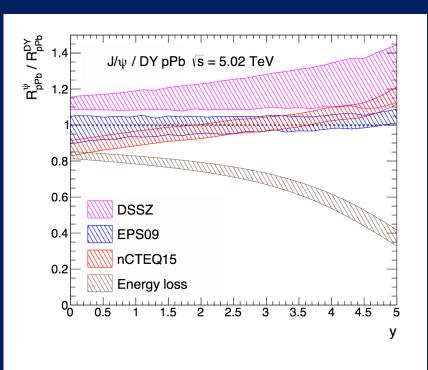


Figure 3: Double ratio $\mathcal{R}_{\text{pPb}}^{\psi/\text{DY}}$ in p-Pb collisions at $\sqrt{s} = 5.02 \text{ TeV}$ for the various nPDF sets and in the coherent energy loss model.

[F. Arleo, S. Peigné arXiv:1512.01794]

- Quarkonium production data so far not precise enough to distinguish between various CNM models
- Double ratio has been proposed as a powerful measurement to disentangle between shadowing and e-loss models
- > LHCb is ideal for this measurement:
 - Optimal acceptance
 - VELO detector capabilities permit to decrease significantly the background from bb production
- Many systematic effects cancel in the ratio
 higher precision
- Projections with 20/nb:1000 Drell-Yan candidates

Summary and Conclusions

- LHCb participated successfully in pPb run in 2013
 - Measurement of J/ψ , $\psi(2s)$, Y-production (also D^o and Z-production)
 - → cold nuclear matter effects visible
 - Limited by statistics → benefit from larger data samples in Run II
- LHCb participated for the first time in 2015 in the PbPb run
 - We have collected a sample of ~5/ub of PbPb collisions
 - Analysis of J/ψ -production in collisions with up to 50% centrality ongoing
- LHCb is looking forward to the pPb run this year.
 - We hope to enhance statistics for pPb by a factor 10
 - LHCb should be able to shed further light on various CNM models
 ... and maybe distinguish between them