

D^0 meson production in *p*Pb and PbPb collisions at $\sqrt{S_{NN}} = 5$ TeV with LHCb

Xianglei Zhu (Tsinghua University) on behalf of the LHCb collaboration

Outline

- The LHCb detector
- *p*Pb data taking and physics motivation
- Prompt D^0 production in *p*Pb collisions
- Prospects of D^0 measurement in PbPb and fixed-target collisions
- Summary

The LHCb detector

A single arm general purpose detector at forward rapidity !

pseudorapidity acceptance $2 < \eta < 5$ Muon system RICH: K/π/p separation μ identification: $\epsilon(\mu \rightarrow \mu) \sim 97\%$ ε(K→K) ~ 95% Mis-ID: ε(π→μ) ~1-3% Vertex detector Mis-ID: $\epsilon(\pi \rightarrow K) \sim 5\%$ IP resolution ~ 20µm **Decay time** resolution ~ 45 fs **Dipole magnet** Electromagnetic Tracking system Bending power 4 Tm + hadronic $\Delta p/p = 0.5\% - 1.0\%$ calorimeters (5 GeV/c - 200 GeV/c)

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

pPb data taking in 2013

- Asymmetric collision energy
 - $E_p = 4 \text{ TeV}$
 - $E_{\rm Pb} = 1.58 \, {\rm TeV} \, {\rm per} \, {\rm nucleon}$
 - $\sqrt{S_{\rm NN}} = 5 {\rm TeV}$
 - $y_{\rm cms} = \pm 0.465$, nucleon-nucleon cms
- Rapidity coverage
 - Rapidity in nucleon-nucleon cms, y^*
 - Forward (*pPb*): 1.5 < *y*^{*} < 4.0
 - **Backward (Pbp)**: $-5.0 < y^* < -2.5$
 - Common coverage: $2.5 < |y^*| < 4.0$
- Integrated luminosity
 - Forward (*pPb*): 1.1 nb⁻¹
 - Backward (Pbp): 0.5 nb⁻¹
 - Only 1/10 data used for the preliminary prompt *D*⁰ analysis !

pPb open charm physics

- Open charm states are sensitive probe to the QGP properties in AA collisions
- However, **cold nuclear matter effect** should be quantified in detail first
 - Nuclear parton distribution function
 - Initial stage radiation or energy loss due to soft collisions
 - Final stage hadronic rescatterings
- With the *p*Pb data, LHCb can play important role in understanding cold nuclear matter effect, thanks to its unique capability
 - Open charm measurement down to zero $p_{\rm T}$ at forward rapidity
 - Separation of prompt and secondary open charm (from *b* decay)

Prompt D^0 measurement in pPb

- Reconstructed through $D^0 \to K^- \pi^+$ decays
- Simultaneous 2D fit to D^0 mass and impact parameter (IP)
 - \rightarrow Extraction of prompt D^0 yields down to zero- p_T

LHCb-CONF-2016-003

PV

 D^0

Mass distribution:

Signal: Crystal Ball Background: linear function

IP distribution:

Prompt Signal: from simulation D^0 from b: from simulation Background: shape from sidebands

6

Prompt D^0 total cross-sections in pPb

LHCb-CONF-2016-003

$$\sigma_{\text{forward}}(p_{\text{T}} < 8 \,\text{GeV}/c, 1.5 < |y^*| < 4.0) = 237 \pm 1 \pm 15 \,\text{mb},$$

 $\sigma_{\text{forward}}(p_{\text{T}} < 8 \,\text{GeV}/c, 2.5 < |y^*| < 4.0) = 124 \pm 1 \pm 8 \,\text{mb.}$

Backward:

Forward:

 $\sigma_{\text{backward}}(p_{\text{T}} < 8 \,\text{GeV}/c, 2.5 < |y^*| < 5.0) = 259 \pm 3 \pm 19 \,\text{mb},$

 $\sigma_{\text{backward}}(p_{\text{T}} < 8 \,\text{GeV}/c, 2.5 < |y^*| < 4.0) = 174 \pm 2 \pm 13 \,\text{mb}.$

Source	Relative uncertainty $(\%)$	
	forward	backward
Correlated between bins		
Signal extraction	0.4	0.4
Tracking	3.6	5.5
PID efficiency	1.1 - 20	1.4 - 15
Luminosity	1.9	2.1
$\mathcal{B}(D^0\to K^+\pi^-)$	1.0	1.0
Uncorrelated between bins		
MC Sample size	1.4 - 6.5	1.4 - 8.3
Statistical uncertainty	1.5 - 16	2.2 - 24

Prompt D^0 double differential cross-section in pPb

LHCb-CONF-2016-003

Prompt D^0 differential cross-section in *p*Pb

LHCb-CONF-2016-003

Sizable forward-backward asymmetry

Prompt D^0 nuclear modification factor in *p*Pb

- $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})}{\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})}, A=208$ LHCb-CONF-2016-003
- Prompt D^0 cross-section in pp collisions at $\sqrt{s} = 5$ TeV was extrapolated using LHCb measurements at 7 and 13 TeV *Nucl. Phys. B871 (2013) 1;*

Nucl. Phys. B871 (2013) 1; JHEP 03 (2016) 159, Erratum-ibid 09 (2016) 013

 $\sigma(\sqrt{s}) = \begin{cases} p_1(\sqrt{s})^{p_0} & \text{power law,} \\ p_1 + p_0\sqrt{s} & \text{linear,} \\ p_1(1 - \exp(-\sqrt{s}/p_0)) & \text{exponential.} \end{cases}$

CAUTION: Preliminary R_{pPb} uses extrapolated pp cross-sections for reference! will be updated soon with the measured pp values!

Extrapolated: $\sigma_{pp}(p_T < 8 \text{ GeV}/c, 2.5 < |y^*| < 4.0) = 713 \pm 95(\text{LHCb}) \pm 47 \text{ (fit model) } \mu\text{b}$

• Prompt D^0 in pp at $\sqrt{s} = 5$ TeV was measured recently! <u>LHCb-PAPER-2016-042</u>

Measured: $\sigma_{pp}(p_T < 8 \text{ GeV}/c, 2.5 < |y^*| < 4.0) = 943 \pm 2 \pm 49 \text{ }\mu\text{b}$

2016/09/24

Prompt D^0 nuclear modification factor in *p*Pb

• Extrapolated pp data at $\sqrt{s} = 5$ TeV for reference

LHCb-CONF-2016-003

MNR with CTEQ6M+EPS09NLO: Nucl. Phys. B373 (1992) 295, JHEP 10 (2003) 046, JHEP 04 (2009) 065

Prompt D^0 nuclear modification factor in *p*Pb

- Extrapolated *pp* data at $\sqrt{s} = 5$ TeV for reference
 - Nuclear modification factor smaller at forward rapidity
 - Measurements consistent with theoretical predictions

MNR with CTEQ6M+EPS09NLO: Nucl. Phys. B373 (1992) 295, JHEP 10 (2003) 046, JHEP 04 (2009) 065

Prompt D^0 forward-backward asymmetry in *p*Pb

- No need for *pp* reference, systematic uncertainty largely cancels
- Significant forward-backward asymmetry observed

MNR with CTEQ6M+EPS09NLO: Nucl. Phys. B373 (1992) 295, JHEP 10 (2003) 046, JHEP 04 (2009) 065

2016/09/24

PbPb data taking in 2015

- LHCb first participated in PbPb run in December 2015
- 24 colliding bunches, integrated luminosity $L = 3 5 \mu b^{-1}$
- Minimum bias trigger

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

A PbPb event with 1130 reconstructed tracks and a J/ψ candidate

Centrality definition in PbPb

- Energy deposition in ECAL/HCAL are used to define collision centrality
 - Not saturated even for most central collisions
 - Minimal correlation with particle production measurements
 - Tracking may be possible up to ~15k VELO hits (100% 50% centrality)

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

D^0 in PbPb (a first look)

Reconstructed through $D^0 \rightarrow K^-\pi^+ + CC$ decays

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Fixed-target experiment with LHCb

SMOG: System for Measuring Overlap with Gas

JINST 9 (2014) P12005

- ➤ Inject noble gases (He, Ne, Ar) into the LHCb vertex detector
- Fixed-target physics in pA and PbA configuration, covering mid-rapidity! Bridge the gap from SPS to LHC in a single experiment!

D^0 in fixed-target collisions (a first look)

pNe collisions at $\sqrt{s_{NN}} = 110 \text{ GeV}$, ~12 hours data taking in 2015

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Summary

- > Prompt D^0 in $\sqrt{s_{NN}} = 5$ TeV *p*Pb collisions
 - Preliminary results on cross-sections, nuclear modification factor, and forward-backward ratio obtained with 1/10 data
 - Sizable forward-backward asymmetry observed, consistent with theoretical predictions
 - Analysis to be updated including full *p*Pb statistics and $\sqrt{s} = 5$ TeV *pp* data as reference
- > D^0 in $\sqrt{s_{\rm NN}} = 5$ TeV PbPb collisions
 - Clear D^0 signals, analysis on-going, results expected up to centralities around 50%
- \succ D^0 in fixed-target collisions
 - Clear D^0 signals, development of methods to exploit the data
- > Outlook
 - Systematic prompt open charm $(D^+, D^{*+}, D_S^+, \Lambda_c)$ analysis in $\sqrt{s_{NN}} = 5$ TeV *p*Pb collisions
 - New *p*Pb data taking at $\sqrt{s_{NN}} = 8$ TeV (high statistics) in 2016
 - Additional fixed-target data taking runs

Thanks and stay tuned!