The Hybrid Strong/Weak Coupling Model for Jet Quenching

J. Casalderrey-Solana,
D. Gulhan, G. Milhano, DP, K. Rajagopal,
arXiv:1405.3864,
1508.00815,1609.05842

Daniel Pablos Alfonso

24th September 2016 Hard Probes

Universitat ${ }_{\text {de }}$ BARCELONA

EXCELENCIA MARÍA DE MAEZTU

Main (current) Assumptions

- Partonic splittings are not modified by the presence of the medium due to scale separation
- Interaction of the partons with the plasma is strongly coupled and can be modelled via holographic results
- Besides transferring energy and momentum to the plasma, the partons can broaden through random transverse kicks
- The deposited energy and momentum completely thermalizes, remembering only the amount of energy and momentum deposited into the fluid, and modifies the hadron spectra produced by hydro

Parton Shower

Generate HardQCD pp events with PYTHIA: version 8.183

- Pt min $=1 \mathrm{GeV}$ (splitting cut-off)
- Initial State Radiation = on
- Multi Partonic Interactions = off
- Stop before hadronization

Where and when do partons effectively split?
Use a formation time argument

$$
\theta \sim k_{\perp} / w
$$

$$
\begin{gathered}
\lambda_{\perp} \sim r \sim \theta \tau_{f} \\
\tau_{f} \sim w / k_{\perp}^{2} \rightarrow 2 E / Q^{2}
\end{gathered}
$$

E, Q

Parton Shower

Shower Embedding

- Select position in transverse plane of Hard Scattering according to an optical Glauber Monte Carlo
- Use the appropriate impact parameter range for each centrality class. Select it according to geometry, filter it through Glauber (i.e. Ncoll weighted)
- Extract plasma properties (temperature, flow velocity) in the vicinity of the parton of interest by reading an event averaged hydro profile ($0-5 \%, 5-10 \%$, 10-20\%, ...)
- No quenching before hydro time (for us, proper time 0.6 fm) and no quenching after Tc (use 145 < Tc < 170 MeV)
- To hadronize the shower simply reintroduce the quenched partons in PYTHIA without colour flow modification. Thermalised partons are put with arbitrarily low energy and momentum

Energy Loss Algorithm

$$
\left.\frac{d E}{d x}\right|_{\text {strongly coupled }}=-\frac{4}{\pi} E_{\text {in }} \frac{x^{2}}{x_{\text {stop }}^{2}} \frac{1}{\sqrt{x_{\text {stop }}^{2}-x^{2}}}, \quad x_{\text {stop }}=\frac{1}{2 \kappa_{\mathrm{sc}}} \underbrace{E_{\text {in }}^{1 / 3}}_{\text {parameter }} \kappa_{s c}^{\text {first }}
$$

given that temperature T is meaningful in the local fluid rest frame (LFRF), need to find E. loss in LAB in terms of E. loss in LFRF

$$
\frac{d E}{d x}=\mathcal{F}\left(x, E_{\text {in }}\right) \quad ? \quad \frac{d E_{F}}{d x_{F}}=\mathcal{F}_{F}\left(x_{F}, E_{\text {in }}^{F}\right)
$$

$$
\text { simple result: } \left.\quad \mathcal{F}\left(x, E_{\text {in }}\right)=\mathcal{F}_{F}\left(x_{F}, E_{\text {in }}^{F}(E)\right)\right)
$$

(also assume that quenching does not change parton direction)

Then need:

$$
\begin{aligned}
& d \mathbf{x}_{F}=\mathbf{w} d t+\gamma_{F}\left(\mathbf{w}_{L}-\mathbf{v}\right) d t \\
& x_{F}(t)=\int_{t_{0}}^{t} d t \sqrt{\left[\mathbf{w}^{2}+\gamma_{F}^{2}\left(\mathbf{v}^{2}-2 \mathbf{v w}+(\mathbf{v w})^{2}\right)\right]} \\
& E_{\text {in }}^{F}=E_{\text {in }} \gamma_{F}(1-\mathbf{w v}) \quad d t=0.01 \mathrm{fm}
\end{aligned}
$$

Broadening

Transverse kicks in the
fluid rest frame
Impose: not change

$$
P^{\mu}=E_{F}\left(1, \mathbf{w}_{F}\right)
$$

$$
P^{\prime \mu}=E_{F}\left(1, \mathbf{w}_{F}^{\prime}\right)
$$

$$
\mathbf{w}_{F}^{\prime 2}=\mathbf{w}_{F}^{2} \quad \mathbf{w}_{F}^{\prime}=\sqrt{1-\frac{q^{2}}{E_{F}^{2} \mathbf{w}_{F}^{2}}} \mathbf{w}_{F}+\frac{q}{E_{F}} \mathbf{e}_{\perp}
$$ virtuality nor energy (in that frame)

Need to express change of momentum in the LAB frame
Use $\quad W_{T}=\frac{1}{W_{F}^{0}}(W-(W \cdot u) u) \quad W=P / E$
to build $\quad P^{\prime \mu}=P^{\mu}-\beta E_{F} W_{T}^{\mu}+q e_{\perp}^{\mu}, \quad \beta \equiv 1-\sqrt{1-\frac{q^{2}}{E_{F}^{2} \mathbf{w}_{F}^{2}}}$
where the transverse vector must satisfy

$$
u \cdot e_{\perp}=0, \quad W \cdot e_{\perp}=0, \quad e_{\perp}^{2}=-1 .
$$

Then find the basis

$$
\begin{array}{cl}
e_{1}^{\mu}=\left(0, \frac{\mathbf{w} \times \mathbf{v}}{|\mathbf{w} \times \mathbf{v}|}\right), & e_{2}^{\mu}=\frac{1}{\sqrt{N}}\left(l_{2}^{\mu}+\alpha W_{\perp}^{\mu}\right) \\
l_{2}^{\mu}=\left(0, \frac{\mathbf{w}}{|\mathbf{w}|} \times \frac{\mathbf{w} \times \mathbf{v}}{|\mathbf{w} \times \mathbf{v}|}\right), & W_{\perp}=W-\frac{W^{2}}{u \cdot W} u, \\
\alpha=-\frac{\left(l_{2} \cdot u\right)(u \cdot W)}{(u \cdot W)^{2}-W^{2}}, & N=\frac{(u \cdot W)^{2}-W^{2}\left(1+\left(l_{2} \cdot u\right)^{2}\right)}{(u \cdot W)^{2}-W^{2}} .
\end{array}
$$

Broadening

- Choose random kick q according to a gaussian with width $\begin{gathered}\Delta Q_{\perp}^{2}=\hat{q} d t_{F} .\end{gathered} \quad \hat{q}=K T^{3}$
- Choose random direction in the transverse plane
- Propagate medium modification to the daughters respecting energy fraction and splitting angle

An Estimate of Backreaction

Perturbations on top of a Bjorken flow

$$
\begin{aligned}
\Delta P_{\perp}^{i} & =w \tau \int d \eta d^{2} x_{\perp} \delta u_{\perp}^{i} & & \Delta S=\tau c_{s}^{-2} s \int d \eta d^{2} x_{\perp} \frac{\delta T}{T} \\
\Delta P^{\eta} & =0 & & c_{s}^{2}=\frac{s}{T} \frac{d T}{d s}
\end{aligned}
$$

$$
\text { Cooper-Frye } \quad E \frac{d N}{d^{3} p}=\frac{1}{(2 \pi)^{3}} \int d \sigma^{\mu} p_{\mu} f\left(u^{\mu} p_{\mu}\right)
$$

One body distribution (OBD)

$$
\begin{array}{r}
E \frac{d N}{d^{3} p}=\frac{1}{32 \pi} \frac{m_{T}}{T^{5}} \cosh \left(y-y_{j}\right) e^{-\frac{m_{T}}{T} \cosh \left(y-y_{j}\right)} \\
{\left[p_{T} \Delta P_{T} \cos \left(\phi-\phi_{j}\right)+\frac{1}{3} m_{T} \Delta M_{T} \cosh \left(y-y_{j}\right)\right]}
\end{array}
$$

An Estimate of Backreaction

One body distribution has negative contributions at large azimuthal separation

Background diminished w.r.t unperturbed hydro for that region in space

Add background, embed jets, subtract background

Event by event, determine the extra particles distribution enforcing energy/momentum conservation

$$
y_{j}=0, \phi_{j}=0, T=0.2 \mathrm{GeV}
$$

Example of the one body distribution

$\mathrm{yj}=0$, Temp $=0.2$

$$
r<0.3
$$

- Wide in azimuthal angle
- Wide in rapidity
- Peaked at very low transverse momentum

$$
y_{j}=0, \phi_{j}=0, T=0.2 \mathrm{GeV}
$$

Example of the one body distribution

$$
y_{j}=0, \phi_{j}=0, T=0.2 \mathrm{GeV}
$$

Example of the one body distribution

yj $=0, ~ T e m p=0.2$

EbE energy-momentum conservation

1. Generate a list of particles according to OBD until the sum of their energies reaches ΔE. "Positive" adds, "negative" subtracts (same for momentum)
2. Select a random particle and regenerate its momentum with OBD (don't allow "positive" or "negative" status change)
3. If the change increases "pass" function, accept it. Else, accept it with a probability
4. Iterate until all components of momentum imbalance are within chosen tolerance

$$
p_{\text {ensemble }}^{\mu}-\Delta P^{\mu}<0.4 \mathrm{GeV}
$$

More on Backreaction

Effective "temperatures" for 0-10\%
Consider just pions and protons for simplicity

Use these "temperatures" both for the background and the backreaction spectra

$$
\begin{aligned}
& T_{\pi}\left(p_{\mathrm{T}}\right)= \begin{cases}0.19 \mathrm{GeV} & \text { if } p_{\mathrm{T}}<0.7 \mathrm{GeV} \\
0.21\left(\frac{p_{\mathrm{T}}}{\mathrm{GeV}}\right)^{0.28} \mathrm{GeV} & \text { if } p_{\mathrm{T}}>0.7 \mathrm{GeV}\end{cases} \\
& T_{p}\left(p_{\mathrm{T}}\right)= \begin{cases}0.15 \mathrm{GeV} & \text { if } p_{\mathrm{T}}<0.07 \mathrm{GeV} \\
0.33\left(\frac{p_{\mathrm{T}}}{\mathrm{GeV}}\right)^{0.3} \mathrm{GeV} & \text { if } 0.07 \mathrm{GeV}<p_{\mathrm{T}}<1.9 \mathrm{GeV} \\
0.4 \mathrm{GeV} & \text { if } p_{\mathrm{T}}>1.9 \mathrm{GeV}\end{cases}
\end{aligned}
$$

Fits ALICE spectra in arXiv:1303.0737

Use background particles to neutralise "negative" tracks with an algorithm that maximises energy and angular position coincidence

Emulate to a "reasonable" degree of accuracy experimental background subtraction (noise/pedestal iteration) and jet corrections:

JES, JER, spectra "unfolding", eta-reflection, etc

Data Comparison

$R_{A A}$ vs R

Consistent with the trend hinted in experiments (?)

Jet Spectra Ratios

motivated by ALICE analysis arXiv:1506.03984

- Higher Pt jets tend to be narrower
- Wider jets more suppressed
- <\#Tracks> increases with Pt
increase of ratios with Pt
PbPb ratios always above pp ones
PbPb vs pp separation increases with Pt

Backreaction on Intra-Jet Observables

Fragmentation Functions

Jet Shapes

- The effect goes in the right direction
- Clearly not enough to explain angular structure
- Oversimplified backreaction?
- Hadronization uncertainties? (medium and vacuum)
- Finite resolution effects?

Recovering Lost Energy: Missing Pt

- Energy is recovered at large angles in the form of soft particles
- Adding medium response is essential for a full understanding of jet quenching

Recovering Lost Energy: Missing Pt

CMS-HIN-14-010

- Energy is recovered at large angles in the form of soft particles
- Adding medium response is essential for a full understanding of jet quenching

Recovering Lost Energy: Missing Pt

CMS-HIN-14-010

- In PbPb, more asymmetric dijet events are dominated by soft tracks in the subleading jet side
- Discrepancies w.r.t. data in the semi-hard regime motivate improvements to our model

Jet radius
 dependence of Missing Pt

CMS-HIN-14-010

Finite Resolution Effects

The QGP cannot resolve sister partons until they are separated a certain distance $L_{\text {Res }}$

If a member of the offspring of a certain parton resolves, then color correlations break and such parton resolves as well

Expect $L_{\text {Res }}$ to be comparable to the plasma screening length λ_{D}
Both weak and strong coupling give approximately $\lambda_{D} \simeq \frac{1}{\pi T}$

Finite Resolution Effects

Partonic

$$
L_{\mathrm{Res}}=\frac{1}{\pi T}
$$

(had to refit $\kappa_{s c}$ to the 10% level)

