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1 Introduction

The idea of PO has been formalized the first time in the context of electroweak observables
around the Z pole [1]. A generalization of this concept to describe possible deformations from
the SM in Higgs production and decay processes has been discussed in Refs. [2,3,4,5,6,7]. The
basic idea is to identify a set of quantities that are

I. experimentally accessible,

II. well-defined from the point of view of QFT,

and capture all relevant New Physics (NP) effects (or all relevant deformations from the SM)
without loosing information and with minimum theoretical bias. The last point implies that
changes in the underlying NP model should not require any new processing of raw experimental
data. In the same spirit, the PO should be independent from the theoretical precision (e.g. LO,
NLO, ...) at which NP effects are computed. Finally, the PO are obtained after removing (via
a proper deconvolution) the effect of the soft SM radiation (both QED and QCD radiation),
that is assumed to be free from NP effects. In the case of observables around the Z pole, the
Γ(Z→ f f̄ ) partial decay rates provide good examples of PO.
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The independence from NP models can not be fulfilled in complete generality. However, it can
be fulfilled under very general assumptions. As far as Higgs physics at LHC is concerned, the
general requirement of Higgs PO is to

III. capture all relevant NP effects in the limit of no new (non-SM) particles below or close
to the Higgs mass.

Under this additional hypothesis, the PO provide a bridge between the fiducial cross-section
measurements and the determination of NP couplings in explicit NP frameworks.

On a more theoretical footing, the Higgs PO are defined from a general decomposition of
on-shell amplitudes involving the Higgs boson –based on analyticity, unitarity, and crossing
symmetry– and a momentum expansion following from the dynamical assumption of no new
light particles (hence no unknown physical poles in the amplitudes) in the kinematical regime
where the decomposition is assumed to be valid. These conditions ensure the generality of this
approach and the possibility to match it to a wide class of explicit NP model, including the
determination of Wilson coefficients in the context of Effective Field Theories.

The old κ framework [8,9] satisfied the conditions I and II, but not the condition III, since the
framework was not general enough to describe modifications in (n > 2)-body Higgs decays
resulting in non-SM kinematics. Similarly, the old κ framework could not describe modifica-
tions of the Higgs-cross sections that cannot be reabsorbed into a simple overall re-scaling with
respect to the SM.

Similarly to the case of electroweak observables, it is convenient to introduce two complemen-
tary sets of Higgs PO:

• a set of physical PO, namely a set of (idealized) partial decay rates and asymmetries;

• a set of effective-couplings PO, parameterizing the on-shell production and decay ampli-
tudes.

The two sets are in one-to-one correspondence: by construction, the effective-couplings PO
are directly related to the physical PO after properly working out the decay kinematics. The
effective-couplings PO are particularly useful to build tools to simulate data, taking into account
the effect of soft QCD and QED radiation.1 This is why, from the practical point of view, the
effective-couplings PO are first extracted from data in the LHC Higgs analysis, and from these
the physical PO are indirectly derived. As we discuss below, the latter provide a more intuitive
and effective presentation of the measurements performed.

The note is organized as follows: the PO for Higgs decays are discussed in Section 2–4, sepa-
rating two, three, and four-body decay modes. General aspects of PO in electroweak production
processes are discussed in Section 5, whereas the specific implementation for VH and VBF is
presented in Section 6. The total number of PO to discuss both production and decay processes

1A first public tool for Higgs PO is available in Ref. [38].
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is summarized in Section 7, where we also address the reduction of the number of independent
terms under specify symmetry assumptions (in particular CP conservation and flavor universal-
ity). Finally, a discussion about the matching between the PO approach and the SM Effective
Field Theory (SMEFT) is presented in Sections 8. The latter section is not needed to discuss
the PO implementation in data analyses, but it provides a bridge between this chapter of the YR
(Measurements and Observables) and the one devoted to the EFT approaches.

2 Two-body decay modes

In the case of two-body Higgs decays into on-shell SM particles, namely h→ f f̄ and h→ γγ ,
the natural physical PO for each mode are the partial decay widths, and possibly the polariza-
tion asymmetry if the spin of the final state is accessible.

In the h→ f f̄ case the main issue to be addressed is the optimal definition of the partial decay
width taking into account the final state QED and QCD radiation.

In the h→ γγ case the point to be addressed is the extrapolation to real photons of electromag-
netic showers with non-vanishing invariant mass.

2.1 h→ f f̄

For each fermion species we can decompose the on-shell h→ f f̄ amplitude in terms of two
effective couplings (y f

S,P), defined by

A (h→ f f̄ ) =− i√
2

(
y f

S f̄ f + iy f
P f̄ γ5 f

)
. (1)

These couplings are real in the limit where we neglect re-scattering effects, that is an excellent
approximation (also beyond the SM if we assume no new light states), for all the accessible
h→ f f̄ channels. If h is a CP-even state (as in the SM), then y f

P is a CP-violating coupling.

In order to match our notation with the κ framework [8], we define the two effective couplings
PO of the h→ f f̄ decays as follows:

κ f =
Re(y f

S)

Re(y f ,SM
S )

, λ
CP
f =

Re(y f
P)

Re(y f ,SM
S )

. (2)

Here y f ,SM
S is the SM effective coupling that provides the best SM prediction in the κ f → 1 and

λ CP
f → 0 limit.
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The measurement of Γ(h → f f̄ )(incl) determines the combination |κ f |2 + |λ CP
f |2, while the

λ CP
f /κ f ratio can be determined only if the lepton polarization is experimentally accessible.

With this notation, the inclusive decay rates, computed assuming a pure bremsstrahlung spec-
trum can be written as

Γ(h→ f f̄ )(incl) =
[
κ

2
f +(λ CP

f )2
]

Γ(h→ f f̄ )(SM)
(incl) , (3)

where fermion-mass effects, of per-mil level even for the b quark, have been neglected. In ex-
periments Γ(h→ f f̄ )(incl) cannot be directly accessed, given tight cuts on the f f̄ invariant mass
to suppress the background: Γ(h→ f f̄ )(incl) is extrapolated from the experimentally accessible
Γ(h→ f f̄ )(cut) assuming a pure bremsstrahlung spectrum, both as far as QED and as far as
QCD (for the qq̄ channels only) radiation is concerned.

The SM decay width is given by

Γ(h→ f f̄ )(SM)
(incl) = N f

c
|y f ,SM

eff |2
16π

m2
H , (4)

where the color factor N f
c is 3 for quarks and 1 for leptons. Using the best SM prediction of the

branching ratios in these channels [8], for mH = 125.0 GeV and Γtot
H = 4.07× 10−3 GeV, we

extract the values of the |y f ,SM
eff | couplings in Eq. (4):

b̄b τ̄τ

B(h→ f̄ f ) 5.77×10−1 6.32×10−2

|y f ,SM
eff | 1.77×10−2 1.02×10−2

,

c̄c µ̄µ

B(h→ f̄ f ) 2.91×10−2 2.19×10−4

|y f ,SM
eff | 3.98×10−3 5.99×10−4

,

As anticipated, the physical PO sensitive to λ CP
f /κ f necessarily involve a determination (direct

or indirect) of the fermion spins. Denoting by~k f the 3-momentum of the fermion f in the Higgs
center of mass frame, and with {~s f ,~s f̄ } the two fermion spins, we can define the following CP-
odd asymmetry [10]

A CP
f =

1

|~k f |
〈~k f · (~s f ×~s f̄ )〉=−

λ CP
f κ f

κ2
f +(λ CP

f )2
(5)

As pointed out in Ref. [11], in the h→ τ+τ−→ Xτ+Xτ− decay chains asymmetries proportional
to A CP

f are accessible through the measurement of the angular distribution of the τ± decay
products.
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Note that, by construction, the effective couplings PO depend on the SM normalization. This
imply an intrinsic theoretical uncertainty in their determination related to the theory error on
the SM reference value. On the other hand, the physical PO are independent of any reference
to the SM. Indeed the (conventional) SM normalization of κ f cancels in Eq. (3).

2.2 h→ γγ

The general decomposition for the h→ γγ amplitude is

A
[
h→ γ(q,ε)γ(q′,ε ′)

]
= i

2
vF

ε
′
µεν

[
εγγ(gµν q·q′−qµq′ν)+ ε

CP
γγ ε

µνρσ qρq′σ
]
, (6)

from which we identify the two effective couplings εγγ and εCP
γγ that, similarly to y f

S,P, can be
assumed to be real in the limit where we assume no new light states and small deviations from
the SM limit. Here vF = (

√
2GF)

−1/2, and GF is the Fermi constant extracted from the muon
decay. We define the effective couplings PO for this channels as

κγγ =
Re(εγγ)

Re(εSM
γγ )

, λ
CP
γγ =

Re(εCP
γγ )

Re(εSM
γγ )

, (7)

where ε
γγ

SM is the value of the PO which reproduces the best SM prediction of the decay width.
By construction, the SM expectation for the two PO is κSM

γγ = 1 and (λ CP
γγ )SM = 0.

If the photon polarization is not accessible, the only physical PO for this channel is Γ(h→
γγ). Starting from realistic observables, where the electromagnetic showers have non-vanishing
invariant mass, Γ(h→ γγ) is defined as the extrapolation to the limit of zero invariant mass for
the electromagnetic showers. The relation between Γ(h→ γγ) and the two effective couplings
PO is

Γ(h→ γγ) =
[
κ

2
γγ +(λ CP

γγ )2
]

Γ(h→ γγ)(SM) , (8)

where

Γ(h→ γγ)(SM) =
|εSM,eff

γγ |2
16π

m3
H

v2
F
. (9)

Using the SM prediction for the branching ratios in two photons [8], for vF = 246.22 GeV,
mH = 125.0 GeV and Γtot

H = 4.07×10−3 GeV, we obtain

B(h→ γγ)SM = 2.28×10−3 → ε
γγ

SM = 3.8×10−3 . (10)

This value corresponds to the 1-loop contribution in the SM, which also fixes the relative sign.
Similarly to the f f̄ case, the SM normalization cancels in the definition of the physical PO.

The physical PO linear in the CP-violating coupling λ CP
γγ necessarily involves the measurement

of the photon polarization and is therefore hardly accessible at the LHC (at least in a direct way,
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see for example []). Denoting by ~q1,2 the 3-momenta of the two photons in the centre of mass
frame, and with~ε1,2 the corresponding polarization vectors, we can define [to be checked]:

A CP
γγ =

1
mh
〈(~q1−~q2) · (~ε1×~ε2)〉=

λ CP
γγ κγγ

κ2
γγ +(λ CP

γγ )2
. (11)

3 Three-body decay modes

The guiding principle for the definition of PO in multi-body channels is the decomposition
of the decay amplitudes in terms of contributions associated to a specific single-particle pole
structure. In the absence of new light states, such poles are generated only by the exchange
of the SM electroweak bosons (γ , Z, and W ) or by hadronic resonances (whose contribution
appears only beyond the tree level and is largely suppressed). Since positions and residues on
the poles are gauge-invariant quantities, this decomposition satisfies the general requirements
for the definitions of PO.

3.1 h→ f f̄ γ

The general form factor decomposition for these channels is

A
[
h→ f (p1) f̄ (p2)γ(q,ε)

]
= i

2
vF

∑
f= fL, fR

( f̄ γµ f )εν ×

×
[
F f γ

T (p2)(p·q gµν −qµ pν)+F f γ

CP(p2)εµνρσ qρ pσ

]
, (12)

where p = p1 + p2. The form factors can be further decomposed as

F f γ

T (p2) = εZγ

g f
Z

PZ(p2)
+ εγγ

eQ f

p2 +∆
SM
f γ (p2) , (13)

F f γ

CP(p2) = ε
CP
Zγ

g f
Z

PZ(p2)
+ ε

CP
γγ

eQ f

p2 . (14)

Here g f
Z are the effective PO describing on-shell Z→ f f̄ decays2 and PZ(q2)= q2−m2

Z+ imZΓZ .
In other words, we decompose the form factors identifying the physical poles associated to the
Z and γ propagators. As in the h→ γγ case, we define vF = (

√
2GF)

−1/2, where GF is the
Fermi constant extracted from the muon decay.

2We have absorbed a factor g/cos(θW ) with respect to the definition of the effective Z couplings adopted at
LEP-1, see Eq. (24).
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The term ∆SM
f γ

(p2) denotes the remnant of the SM h→ f f̄ γ loop function that is regular both
in the limit p2→ 0 and in the limit p2→m2

Z . This part of the amplitude is largely subdominant
(being not enhanced by a physical single-particle pole) and cannot receive non-standard con-
tributions from operators of dimension up to 6 in the EFT approach to Higgs physics. For this
reason it is fixed to its SM value.

In this channel we thus have four effective couplings PO, related to the four εX terms in Eqs. (13)
and (14), two of which are accessible also in h → 2γ . Similarly to the h → 2γ case, it is
convenient to define the PO normalizing them the corresponding reference SM values of the
amplitudes. We thus define

κZγ =
Re(εZγ)

Re(εSM
Zγ

)
, λ

CP
Zγ =

Re(εCP
Zγ

)

Re(εSM
Zγ

)
, (15)

where the numerical value of the SM contribution εSM
Zγ

is obtained from the best SM prediction
for the h→ Zγ decay width.

The simplest physical PO that can be extracted from this channel is Γ(h→ Zγ), where both the
Z boson and the photon are on-shell. By construction, this can be written as

Γ(h→ Zγ) =
[
κ

2
Zγ +(λ CP

Zγ )
2
]

Γ(h→ Zγ)(SM) , (16)

where

Γ(h→ Zγ)(SM) =
|εSM,eff

Zγ
|2

8π

m3
H

v2

(
1− m2

Z

m2
H

)3

. (17)

The SM prediction for this decay rate [8] provides the value of ε
Zγ

SM:

B(h→ Zγ)(SM) = 1.54×10−3 → ε
SM
Zγ = 6.9×10−3 . (18)

The independent physical PO linear in the coupling λ CP
Zγ

is the following CP-odd asymmetry at
the Z peak [to be checked]:

A CP
Zγ =

1
|~p||~q|〈~p · (~q×~εγ)〉

∣∣∣∣
(p2=m2

Z)

=
λ CP

Zγ
κZγ

κ2
Zγ

+(λ CP
Zγ

)2
, (19)

where all 3-momenta are defined in the Higgs center of mass frame.

This channel is also sensitive to Γ(h→ γγ) and A CP
γγ via the effective couplings κγγ (or εγγ )

and λ CP
γγ (or εCP

γγ ). Determining such couplings from a fit to the from factors in the low p2

region, one can indirectly determine Γ(h→ γγ) and A CP
γγ by means of Eq. (8) and Eq. (11),

respectively.
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4 Four-fermion decay modes

Similarly to the three-body modes, also in this case the guiding principle for the definition of PO
is the decomposition of the decay amplitudes in terms of contributions associated to a specific
pole structure. Such decomposition for the h→ 4 f channels has been presented in Ref. [2]. The
effective coupling PO that appear in these channels consist of four sets:

• 3 flavor-universal charged-current PO: {κWW ,εWW ,εCP
WW};

• 7 flavor-universal neutral-current PO, 4 of which are appearing already in h→ γγ and h→
f f̄ γ : {κγγ ,λ

CP
γγ ,κZγ ,λ

CP
Zγ
}, and another 3 which are specific for h→ 4 f : {κZZ,εZZ,ε

CP
ZZ };

• the set of flavor non-universal charged-current PO: {εW f };
• the set of flavor non-universal neutral-current PO: {εZ f }.

While the number of flavor-universal PO is fixed, the number of flavor non-universal PO depend
on the fermion species we are interested in. For instance, looking only at light leptons (`= e,µ),
we have 4 flavor non-universal PO contributing to h→ 4` modes (εZ f , with f = eL,eR,µL,µR)
and 4 PO contributing to h→ 2`2ν modes (εWeL ,εW µL ,εZνe ,εZνµ

). The definition of these PO is
done at the amplitude level, separating neutral-current and charged-current contributions to the
h→ 4 f processes, as discussed below.

Starting from each of the effective couplings PO we can define a corresponding physical PO. In
particular, Γ(h→ ZZ) is defined as the (ideal) rate extracted from the full Γ(h→ 4 f ), extrapo-
lating the result in the limit κZZ 6= 0 and all the other effective couplings set to zero. Similarly
Γ(h→ Z f f̄ ) is defined from the extrapolation in the limit εZ f 6= 0 and all the other effective
couplings set to zero (see extended discussion below).

4.1 h→ 4 f neutral currents

Let us consider the case of two different (light) fermion species: h→ f f̄ + f ′ f̄ ′. Neglecting
helicity-violating terms (yielding contributions suppressed by light fermion masses in the rates),
we can decompose the neutral-current contribution to the amplitude in the following way

An.c.
[
h→ f (p1) f̄ (p2) f ′(p3) f̄ ′(p4)

]
= i

2m2
Z

vF
∑

f= fL, fR
∑

f ′= f ′L, f
′
R

( f̄ γµ f )( f̄ ′γν f ′)T µν
n.c. (q1,q2)

T µν
n.c. (q1,q2) =

[
F f f ′

L (q2
1,q

2
2)g

µν +F f f ′
T (q2

1,q
2
2)

q1·q2 gµν −q2
µq1

ν

m2
Z

+F f f ′
CP (q2

1,q
2
2)

εµνρσ q2ρq1σ

m2
Z

]
, (20)
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where q1 = p1 + p2 and q2 = p3 + p4. The form factor FL describes the interaction with the
longitudinal part of the current, as in the SM, the FT term describes the interaction with the
transverse part, while FCP describes the CP-violating part of the interaction (if the Higgs is
assumed to be a CP-even state).

We can further expand the form factors in full generality around the poles, providing the defini-
tion of the neutral-current PO [2]:

F f f ′
L (q2

1,q
2
2) = κZZ

g f
Zg f ′

Z

PZ(q2
1)PZ(q2

2)
+

εZ f

m2
Z

g f ′
Z

PZ(q2
2)

+
εZ f ′

m2
Z

g f
Z

PZ(q2
1)

+∆
SM
L (q2

1,q
2
2) , (21)

F f f ′
T (q2

1,q
2
2) = εZZ

g f
Zg f ′

Z

PZ(q2
1)PZ(q2

2)
+ εZγ

(
eQ f ′g

f
Z

q2
2PZ(q2

1)
+

eQ f g f ′
Z

q2
1PZ(q2

2)

)
+ εγγ

e2Q f Q f ′

q2
1q2

2

+∆
SM
T (q2

1,q
2
2), (22)

F f f ′
CP (q2

1,q
2
2) = ε

CP
ZZ

g f
Zg f ′

Z

PZ(q2
1)PZ(q2

2)
+ ε

CP
Zγ

(
eQ f ′g

f
Z

q2
2PZ(q2

1)
+

eQ f g f ′
Z

q2
1PZ(q2

2)

)
+ ε

CP
γγ

e2Q f Q f ′

q2
1q2

2
. (23)

Here g f
Z are Z-pole PO extracted from Z decays at LEP-I, the translation to the notation used at

LEP being very simple

g f
Z =

2mZ

vF
gLEP

f , and (g f
Z)SM = 2mZ

vF
(T f

3 −Q f s2
θW

) . (24)

As anticipated, all the parameters but εZ f and g f
Z are flavor universal, i.e. they do not depend on

the fermion species. In fact, flavor non-universal effects in g f
Z have been very tightly constrained

at LEP, however, sizeable effects in εZ f are possible and should be tested at the LHC. In the limit
where we neglect re-scattering effects, both κZZ and εX are real. The functions ∆SM

L,T (q
2
1,q

2
2)

denote subleading non-local contributions that are regular both in the limit q2
1,2→ 0 and in the

limit q2
1,2→ m2

Z . As in the 3-body decay case, this part of the amplitude is largely subdominant
and not affected by operators with dimension up to 6, therefore it is fixed it to its SM value.

4.2 h→ 4 f charged currents

Let us consider the h→ `ν̄` ¯̀′ν`′ process.3 Employing the same assumptions used in the neutral
current case, we can decompose the amplitude in the following way:

Ac.c.
[
h→ `(p1)ν̄`(p2)ν`′(p3) ¯̀′(p4)

]
= i

2m2
W

vF
( ¯̀Lγµν`L)(ν̄`′Lγν`

′
L)T

µν
c.c. (q1,q2)

3 The analysis of a process involving quarks is equivalent, with the only difference that the εW f coefficients are
in this case non-diagonal matrices in flavor space, as the gW

ud effective couplings.
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T µν
c.c. (q1,q2) =

[
G``′

L (q2
1,q

2
2)g

µν +G``′
T (q2

1,q
2
2)

q1·q2 gµν −q2
µq1

ν

m2
W

+G``′
CP(q

2
1,q

2
2)

εµνρσ q2ρq1σ

m2
W

]
, (25)

where q1 = p1 + p2 and q2 = p3 + p4. The decomposition of the form factors, that allows us to
define the charged-current PO, is [2]

G``′
L (q2

1,q
2
2) = κWW

(g`W )∗g`
′

W

PW (q2
1)PW (q2

2)
+

(εW`)
∗

m2
W

g`
′

W

PW (q2
2)

+
εW`′

m2
W

(g`W )∗

PW (q2
1)

, (26)

G``′
T (q2

1,q
2
2) = εWW

(g`W )∗g`
′

W

PW (q2
1)PW (q2

2)
, (27)

G``′
CP(q

2
1,q

2
2) = ε

CP
WW

(g`W )∗g`
′

W

PW (q2
1)PW (q2

2)
, (28)

where PW (q2) is the W propagator defined analogously to PZ(q2) and g f
W are the effective cou-

plings describing on-shell W decays (we have absorbed a factor of g compared to standard
notations). In the SM,

(gik
W )SM =

g√
2

Vik , (29)

where V is the CKM mixing matrix.4 In absence of rescattering effects, the Hermiticity of the
underlying effective Lagrangian implies that κWW , εWW and εCP

WW are real couplings, while εW`

can be complex.

4.3 h→ 4 f complete decomposition

The complete decomposition of a generic h→ 4 f amplitude is obtained combining neutral- and
charged-current contributions depending on the nature of the fermions involved. For instance
h→ 2e2µ and h→ ` ¯̀qq̄ decays are determined by a single neutral current amplitude, while
the case of two identical lepton pairs is obtained from Eq. (20) taking into account the proper
(anti-)symmetrization of the amplitude:

A
[
h→ `(p1) ¯̀(p2)`(p3) ¯̀(p4)

]
= An.c.

[
h→ f (p1) f̄ (p2) f ′(p3) f̄ ′(p4)

]
f= f ′=`

− An.c.
[
h→ f (p1) f̄ (p4) f ′(p3) f̄ ′(p2)

]
f= f ′=`

. (30)

The h→ e±µ∓νν̄ decays receive contributions from a single charged-current amplitude, while
in the h→ ` ¯̀νν̄ case we have to sum charged and neutral-current contributions:

A
[
h→ `(p1) ¯̀(p2)ν(p3)ν̄(p4)

]
= An.c.

[
h→ `(p1) ¯̀(p2)ν(p3)ν̄(p4)

]

− Ac.c.
[
h→ `(p1)ν̄(p4)ν(p3) ¯̀(p2)

]
. (31)

4More precisely, (gik
W )SM = g√

2
Vik if i and k refers to left-handed quarks, otherwise (gik

W )SM = 0.
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4.4 Physical PO for h→ 4`

To define the idealised physical PO we start with the quadratic terms for each of the form
factors in Eqs. (21-23), and compute their contribution to the double differential decay rate for
h→ e+e−µ+µ− (for κZZ , εZZ and εCP

ZZ ) and for h→ Z`+`− (for the contact terms εZ`).

Decay channel h→ e+e−µ+µ−

We choose this particular decay channel for the (conventional) definition of the physical PO
because it depends on all the PO relevant for h→ 4` and because it does not contain interference
between the two fermion currents as in Eq. (30). The independent contributions of the three
form factors to the decay rate are:

dΓLL

dm1dm2
=

λpβ10

2304π5
m4

Zm3
h

v2
F

m1m2 ∑
f , f ′

∣∣∣F f f ′
L

∣∣∣
2
,

dΓTT

dm1dm2
=

λpβ4

1152π5
m3

h

v2
F

m3
1m3

2 ∑
f , f ′

∣∣∣F f f ′
T

∣∣∣
2
,

dΓCP

dm1dm2
=

λpβ2

1152π5
m3

h

v2
F

m3
1m3

2 ∑
f , f ′

∣∣∣F f f ′
CP

∣∣∣
2
,

(32)

where f = eL,eR, f ′ = µL,µR, m1(2) ≡
√

q2
1(2) and

λp =

√√√√1+
(

m2
1−m2

2
m2

h

)2

−2
m2

1 +m2
2

m2
h

, βN = 1+
m4

1 +Nm2
1m2

2 +m4
2

m4
h

−2
m2

1 +m2
2

m2
h

. (33)

Inside each term of the type ∑ f , f ′

∣∣∣F f f ′
i

∣∣∣
2
, we extract only the quadratic terms in each PO. By

integrating in m1 and m2 we obtain the partial decay rates as given by each PO separately (in
the limit where the others are negligible):

Γ(h→ 2e2µ)[κZZ] = 4.929×10−2(|gZeL |2 + |gZeR|2)(|gZµL |2 + |gZµR |2) |κZZ|2 MeV

Γ(h→ 2e2µ)[εZZ] = 4.458×10−3(|gZeL |2 + |gZeR|2)(|gZµL |2 + |gZµR |2) |εZZ|2 MeV

Γ(h→ 2e2µ)[εCP
ZZ ] = 1.884×10−3(|gZeL |2 + |gZeR|2)(|gZµL |2 + |gZµR |2) |εCP

ZZ |2 MeV
(34)

The numerical coefficients in Eq. (34) have been obtained neglecting QED corrections. The
latter must be included at the simulation level by appropriate QED showering programs, such
as PHOTOS [12]. As shown in Ref. [13]: the impact of such corrections is negligible after
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integrating over the full phase space, hence in the overall normalization of the partial rates
in Eq. (34), while they can provide sizable distortions of the spectra in specific phase-space
regions.

Since each effective coupling PO correspond to a well-defined pole contribution to the ampli-
tude (with one or two poles of the Z boson), and a well-defined Lorentz and flavor structure, we
can associate to the those partial rates a well-defined physical meaning. In particular, we define
the following physical PO for the h→ 4` decays:

Γ(h→ ZLZL)≡
Γ(h→ 2e2µ)[κZZ]

B(Z→ 2e)B(Z→ 2µ)
= 0.209 |κZZ|2 MeV

Γ(h→ ZT ZT )≡
Γ(h→ 2e2µ)[εZZ]

B(Z→ 2e)B(Z→ 2µ)
= 0.0189 |εZZ|2 MeV

Γ
CPV(h→ ZT ZT )≡

Γ(h→ 2e2µ)[εCP
ZZ ]

B(Z→ 2e)B(Z→ 2µ)
= 0.00799 |εCP

ZZ |2 MeV

(35)

where, due to the double pole structure of the amplitude, we have removed the (physical)
branching ratios of the Z→ e+e− and Z→ µ+µ− decays. Here

B(Z→ 2`) =
Γ0

ΓZ
R`
(
(g`L

Z )2 +(g`R
Z )2
)
' 0.4856

(
(g`L

Z )2 +(g`R
Z )2
)
, (36)

where Γ0 =
mZ
24π

, ΓZ is the total decay width and R` =
(
1+ 3

4π
α(mZ)

)
describes final state QED

radiation.

Decay channel h→ Z`+`−

The idealised physical PO related to the contact terms can be defined directly from the on-
shell decay h→ Z`+`−, where ` = eL,eR,µL,µR and the Z boson is assumed to be on-shell
(narrow width approximation). We compute this decay rate, neglecting QED corrections and
light lepton masses, in presence of the contact terms εZ` only. The Dalitz double differential
rate in s12 ≡ (p`+ + p`−)2 and s23 ≡ (p`−+ pZ)

2 is

dΓ

ds12ds23
=

1
(2π)3

1
32m2

h

4|εZ`|2
v2

(
s12 +

(s23−m2
Z)(m

2
h− s12− s23)

m2
Z

)
, (37)

The allowed kinematical region is 0 < s12 < (mh−mZ)
2 and, for any given value of s12, smin

23 <
s23 < sMax

23 with

smin(Max)
23 = (E∗2 +E∗Z)

2−
(

E∗2 ±
√
(E∗Z)2−m2

Z

)2

, (38)
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where E∗2 =
√

s12/2 and E∗Z =
m2

h−s12−m2
Z

2
√

s12
. The total decay width defines the relation between

the physical PO and the effective couplings PO as:

Γ(h→ Z`+`−) = 0.0366|εZ`|2 MeV . (39)

Together with the physical PO already defined for h→ γγ and h→ Zγ , we have thus established
a complete mapping between the effective couplings PO and the physical PO appearing in
h→ 4` decays.

4.5 Physical PO for h→ 2`2ν

Physical observables for charged-current processes can be defined in a very similar way as the
neutral-current ones. In particular, we use the h→ e+νeµ−ν̄µ process for the physical PO
corresponding to kWW , εWW , and εCP

WW , and h→W+`ν̄` for the contact terms.

Decay channel h→ e+νeµ−ν̄µ

Integrating the differential distributions analogous to Eq. (32) we obtain the expression of the
total decay rate in this channel, in the limit where only one PO is turned on:

Γ(h→ eµ2ν)[κWW ] = 2.20×10−4|gWeL |2|gW µL |2 |κWW |2 MeV

Γ(h→ eµ2ν)[εWW ] = 4.27×10−5|gWeL |2|gW µL |2 |εWW |2 MeV

Γ(h→ eµ2ν)[εCP
WW ] = 1.77×10−5|gWeL |2|gW µL |2 |εCP

WW |2 MeV
(40)

As in the neutral channel, the physical PO are defined from these quantities by factorizing the
W branching ratios:

Γ(h→WLWL)≡
Γ(h→ eµ2ν)[κWW ]

B(W → eν̄e)B(W → µν̄µ)
= 0.841 |κWW |2 MeV

Γ(h→WTWT )≡
Γ(h→ eµ2ν)[εWW ]

B(W → eν̄e)B(W → µν̄µ)
= 0.163 |εWW |2 MeV

Γ
CPV(h→WTWT )≡

Γ(h→ eµ2ν)[εCP
WW ]

B(W → eν̄e)B(W → µν̄µ)
= 0.0677 |εCP

WW |2 MeV .

(41)

The W branching ratios are given by

B(W → `ν̄`) =
Γ0

ΓW
(gW`L)

2 ' 0.511(gW`L)
2 , (42)

where Γ0 =
mW
24π

, ΓW is the total decay width.
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PO Physical PO Relation to the eff. coupl.
κ f , λ CP

f Γ(h→ f f̄ ) = Γ(h→ f f̄ )(SM)[(κ f )
2 +(λ CP

f )2]

κγγ , λ CP
γγ Γ(h→ γγ) = Γ(h→ γγ)(SM)[(κγγ)

2 +(λ CP
γγ )2]

κZγ , λ CP
Zγ

Γ(h→ Zγ) = Γ(h→ Zγ)(SM)[(κZγ)
2 +(λ CP

Zγ
)2]

κZZ Γ(h→ ZLZL) = (0.209 MeV)×|κZZ|2
εZZ Γ(h→ ZT ZT ) = (1.9×10−2 MeV)×|εZZ|2
εCP

ZZ ΓCPV(h→ ZT ZT ) = (8.0×10−3 MeV)×|εCP
ZZ |2

εZ f Γ(h→ Z f f̄ ) = (3.7×10−2 MeV)×N f
c |εZ f |2

κWW Γ(h→WLWL) = (0.84 MeV)×|κWW |2
εWW Γ(h→WTWT ) = (0.16 MeV)×|εWW |2
εCP

WW ΓCPV(h→WTWT ) = (6.8×10−2 MeV)×|εCP
WW |2

εW f Γ(h→W f f̄ ′) = (0.14 MeV)×N f
c |εW f |2

Table 1: Summary of the effective coupling PO and the corresponding physical PO. The parameter N f
c

is 1 for leptons and 3 for quarks. In the case of the charged-current contact term, f ′ is the SU(2)L partner
of the fermion f .

Decay channel h→W+`ν̄`

Also in this case the physical PO corresponding to the charged-current contact terms are defined
in complete analogy to the neutral-current case, starting from the 3-body decay h→W+`ν̄`. The
total decay width computed in the limit where only the contact term PO is switched on defines
the relation between the physical PO and the effective couplings PO as:

Γ(h→W+`ν̄`) = 0.143|εW`|2 MeV . (43)

5 PO in Higgs electroweak production: generalities

The PO decomposition of h→ 4 f amplitude discussed above can naturally be generalized to
describe electroweak Higgs-production processes, namely Higgs-production via vector-boson
fusion (VBF) and Higgs-production in association with a massive SM gauge boson (VH).

The interest of such production processes is twofold. On the one hand, they are closely con-
nected to the h→ 4`,2`2ν decay processes by crossing symmetry, and by the exchange of
lepton currents into quark currents. As a result, some of the Higgs PO necessary to describe the
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h→ 4`,2`2ν decay kinematics appear also in the description of the VBF and VH cross sections
(independently of the Higgs decay mode). This facts opens the possibility of combined analyses
of production cross sections and differential decay distributions, with a significant reduction on
the experimental error on the extraction of the PO. On the other hand, the production cross sec-
tions allow to explore different kinematical regimes compared to the decays. By construction,
the momentum transfer appearing in the Higgs decay amplitudes is limited by the Higgs mass,
while such limitation is not present in the production amplitudes. The higher energies probed in
the production processes provide an increased sensitivity to new physics effects. This fact also
allows to test the momentum expansion that is intrinsic in the PO decomposition, as well as in
any effective field theory approach to physics beyond the SM.

Despite the similarities at the fundamental level, the phenomenological description of VBF
and VH in terms of PO is significantly more challenging compared to that of Higgs decays.
On the one hand, QCD corrections plays a non-negligible role in the production processes.
Although technically challenging, this fact does not represent a conceptual problem for the PO
approach: the leading QCD corrections factorize in VBF and VH, similarly to the factorization
of QED corrections in h→ 4`. This implies that NLO QCD corrections can be incorporated in
general terms with suitable modifications of the existing Montecarlo tools. On the other hand,
the relation between the kinematical variables at the basis of the PO decomposition (i.e. the
momentum transfer of the partonic currents, q2) and the kinematical variables accessible in
pp collisions is not straightforward, especially in the VBF case. This problem finds a natural
solution in the VBF case due to strong correlation between q2 and the pT of the VBF tagged
jets, while in the VH case invariant mass of the VH system is correlated to the vector pT .

5.1 Amplitude decomposition

Neglecting the light fermion masses, the electroweak production processes VH and VBF or,
more precisely, the electroweak partonic amplitudes f1 f2 → h+ f3 f4, can be completely de-
scribed by the three-point correlation function of the Higgs boson and two (color-less) fermion
currents

〈0|T
{

Jµ

f (x),J
ν

f ′(y),h(0)
}
|0〉 , (44)

where all the states involved are on-shell. The same correlation function controls also the four-
fermion Higgs decays discussed above. In the h→ 4`,2`2ν case both currents are leptonic
and all fermions are in the final state. In case of VH associate production one of the currents
describes the initial state quarks, while the other describes the decay products of the (nearly
on-shell) vector boson. Finally, in VBF production the currents are not in the s-channel as in
the previous cases, but in the t-channel. Strictly speaking, in VH and VBF the quark states are
not on-shell; however, their off-shellness of order ΛQCD can be safely neglected compared to
the electroweak scale characterizing the process (both within and beyond the SM).

As in the h→ 4 f case, we can expand the correlation function in Eq. (44) around the known
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physical poles due to the propagation of intermediate SM electroweak gauge bosons. The PO
are then defined by the residues on the poles and by the non-resonant terms in this expansion. By
construction, terms corresponding to a double pole structure are independent from the nature
of the fermion current involved. As a result, the corresponding PO are universal and can be
extracted from any of the above mention processes, both in production and in decays [7].

5.1.1 Vector boson fusion Higgs production

Higgs production via vector boson fusion (VBF) receives contribution both from neutral- and
charged-current channels. Also, depending on the specific partonic process, there could be two
different ways to construct the two currents, and these two terms interfere with each other. For
example, for uu→ uuh one has the interference between two neutral-current processes, while
in ud → udh the interference is between neutral and charged currents. In this case it is clear
that one should sum the two amplitudes with the proper symmetrization, as done in the case of
h→ 4e.

We now proceed describing how each of these amplitudes can be parametrized in terms of PO.
Let us start with the neutral-current one. The amplitude for the on-shell process qi(p1)q j(p2)→
qi(p3)q j(p4)h(k) can be parametrized by

An.c(qi(p1)q j(p2)→ qi(p3)q j(p4)h(k)) = i
2m2

Z
v

q̄i(p3)γµqi(p1)q̄ j(p4)γνq j(p2)T
µν

n.c. (q1,q2),

(45)
where q1 = p1− p3, q2 = p2− p4 and T µν

n.c. (q1,q2) is the same tensor structure appearing in
h→ 4 f decays. Indeed, proceeding as in Eq. (20), using Lorentz invariance we decompose this
tensor structure in term of three from factors:

T µν
n.c. (q1,q2) =

[
Fqiq j

L (q2
1,q

2
2)g

µν +Fqiq j
T (q2

1,q
2
2)

q1·q2 gµν −q2
µq1

ν

m2
Z

+Fqiq j
CP (q2

1,q
2
2)

εµνρσ q2ρq1σ

m2
Z

]
. (46)

Similarly, the charged-current contribution to the amplitude for the on-shell process ui(p1)d j(p2)→
dk(p3)ul(p4)h(k) can be parametrized by

Ac.c(ui(p1)d j(p2)→ dk(p3)ul(p4)h(k)) = i
2m2

W
v

d̄k(p3)γµui(p1)ūl(p4)γνd j(p2)T
µν

c.c. (q1,q2),

(47)
where, again, T µν

c.c. (q1,q2) is the same tensor structure appearing in the charged-current h→ 4 f
decays:

T µν
c.c. (q1,q2) =

[
Gi jkl

L (q2
1,q

2
2)g

µν +Gi jkl
T (q2

1,q
2
2)

q1·q2 gµν −q2
µq1

ν

m2
W
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+Gi jkl
CP (q2

1,q
2
2)

εµνρσ q2ρq1σ

m2
W

]
(48)

The amplitudes for the processes with initial anti-quarks can easily be obtained from the above
ones.

The next step is to perform a momentum expansion of the form factors around the physical poles
due to the propagation of SM electroweak gauge bosons (γ , Z and W±), and to define the PO
(i.e. the set {κi,εi}) from the residues of such poles. We stop this expansion neglecting terms
which can be generated only by local operators with dimension higher than six. A discussion
about limitations and consistency checks of this procedure will be presented later on. The
decomposition of the form factors closely follows the procedure already introduced for the
decay amplitudes and will not be repeated here. We report explicitly only expression of the
longitudinal form factors, where the contact terms not accessible in the leptonic decays appear:

Fqiq j
L (q2

1,q
2
2) = κZZ

gqi
Z gq j

Z

PZ(q2
1)PZ(q2

2)
+

εZqi

m2
Z

gq j
Z

PZ(q2
2)

+
εZq j

m2
Z

gqi
Z

PZ(q2
1)

+∆
SM
L,n.c.(q

2
1,q

2
2) ,

Gi jkl
L (q2

1,q
2
2) = κWW

gik
W g jl

W

PW (q2
1)PW (q2

2)
+

εWik

m2
W

g jl
W

PW (q2
2)

+
εW jl

m2
W

gik
W

PW (q2
1)

+∆
SM
L,c.c(q

2
1,q

2
2) .

(49)

Here PV (q2) = q2 −m2
V + imV ΓV , while g f

Z and gik
W are the PO characterizing the on-shell

couplings of Z and W boson to a pair of fermions, see Eqs. (24) and (29). The functions
∆SM

L,n.c.(c.c.)(q
2
1,q

2
2) denote non-local contributions generated at the one-loop level (and encoding

multi-particle cuts) that cannot be re-absorbed in the definition of κi and εi. At the level of
precision we are working, taking into account also the high-luminosity phase of the LHC, these
contributions can be safely fixed to their SM values.

As anticipated, the crossing symmetry between h→ 4 f and 2 f → h2 f amplitudes ensures that
the PO are the same in production and decay (if the same fermions species are involved). The
amplitudes are explored in different kinematical regimes in the two type of processes (in partic-
ular the momentum-transfers, q2

1,2, are space-like in VBF and time-like in h→ 4 f ). However,
this does not affect the definition of the PO. This implies that the fermion-independent PO asso-
ciated to a double pole structure, such as κZZ and κWW in Eq. (49), are expected to be measured
with higher accuracy in h→ 4` and h→ 2`2ν rather than in VBF. On the contrary, VBF is
particularly useful to constrain the fermion-dependent contact terms εZqi and εWuid j , that appear
only in the longitudinal form factors.

5.1.2 Associated vector boson plus Higgs production

The VH production process denote the production of a Higgs boson with a nearly on-shell
massive vector boson (W or Z). For simplicity, in the following we will assume that the vector
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boson is on-shell and that the interference with the VBF amplitude can be neglected. However,
we stress that the PO formalism clearly allow to describe both these effects (off-shell V and
interference with VBF in case of V → q̄q decay) simply applying the general decomposition of
neutral- and charged-current amplitudes as outlined above.

Similarly to VBF, Lorentz invariance allows us to decompose the amplitudes for the on-shell
processes qi(p1)q̄i(p2)→ h(p)Z(k) and ui(p1)d̄ j(p2)→ h(p)W+(k) in three possible tensor
structures: a longitudinal one, a transverse one, and a CP-odd one,

A (qi(p1)q̄i(p2)→ h(p)Z(k)) = i
2m2

Z
v

q̄i(p2)γνqi(p1)ε
Z∗
µ (k)×

×
[

FqiZ
L (q2)gµν +FqiZ

T (q2)
−(q · k)gµν +qµkν

m2
Z

+FqiZ
CP (q2)

εµναβ qαkβ

m2
Z

]
,

(50)

A (ui(p1)d̄ j(p2)→ h(p)W+(k)) = i
2m2

W
v

d̄ j(p2)γνui(p1)ε
W∗
µ (k)×

×
[

Gqi jW
L (q2)gµν +Gqi jW

T (q2)
−(q · k)gµν +qµkν

m2
W

+Gqi jW
CP (q2)

εµναβ qαkβ

m2
W

]
,

(51)

where q = p1 + p2 = k+ p. In the limit where we neglect the off-shellness of the final-state V ,
the form factors depend only on q2. Already from this decomposition of the amplitude it is clear
the importance of providing measurements of the differential cross-section as a function of q2,
as well as differential measurements in terms of the angular variables that allow to disentangle
the different tensor structures.

Performing the momentum expansion of the form factors around the physical poles, and defin-
ing the PO as in Higgs decays and VBF, we find

FqiZ
L (q2) = κZZ

gZqi
PZ(q2)

+
εZqi
m2

Z
Gqi jW

L (q2) = κWW
(g

uid j
W )∗

PW (q2)
+

ε∗Wuid j

m2
W

FqiZ
T (q2) = εZZ

gZqi
PZ(q2)

+ εZγ
eQq
q2 Gqi jW

T (q2) = εWW
(g

uid j
W )∗

PW (q2)

FqiZ
CP (q2) = εCP

ZZ
gZqi

PZ(q2)
− εCP

Zγ

eQq
q2 Gqi jW

CP (q2) = εCP
WW

(g
uid j
W )∗

PW (q2)

(52)

where we have omitted the indication of the (tiny) non-local terms, fixed to their corresponding
SM values. As in the VBF case, only the longitudinal form factors FL and GL contain PO not
accessible in the leptonic decays, namely the quark contact terms εZqi and εWuid j .
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6 PO in Higgs electroweak production: phenomenology

6.1 Vector Boson Fusion

At the parton level (i.e. in the qq→ hqq hard scattering) the ideal observable relevant to extract
the momentum dependence of the factor factors would be the double differential cross section
d2σ/dq2

1dq2
2, where q1 = p1− p3 and q2 = p2− p4 are the momenta of the two fermion currents

entering the process (here p1, p2 (p3, p4) are the momenta of the initial (final) state quarks).
The q2

i are also the key variables to test and control the momentum expansion at the basis of the
PO decomposition.

A first nontrivial task is to choose the proper pairing of the incoming and outgoing quarks, given
we are experimentally blind to their flavor. For partonic processes receiving two interfering
contributions when the final-state quarks are exchanged, such as uu→ huu or ud → hud, the
definition of q1,2 is even less transparent since a univocal pairing of the momenta can not be
assigned, in general, even if one knew the flavor of all partons. This problem can be simply
overcome at a practical level by making use of the VBF kinematics, in particular the fact that
the two jets are always very forward. This implies one can always pair the momenta of the
jet going, for example, on the +z direction with the initial parton going in the same direction,
and viceversa. The same argument can be used to argue that the interference between different
amplitudes (e.g. neutral current and charged current) is negligible in VBF. In order to check
this, we have performed a leading order parton level simulation of the VBF Higgs production
(pp→ h j j) using MADGRAPH5_AMC@NLO [14] (version 2.2.3) at 13 TeV c.m. energy. We
have imposed the basic set of cuts,

pT,j1,2 > 30 GeV, |ηj1,2|< 4.5, and mj1j2 > 500 GeV. (53)

In Fig. 1, we show the distribution in the opening angle of the incoming and outgoing quark
momenta for the two different pairings. The left plot is for the SM, while the right plot is
for a specific NP benchmark point. Shown in blue is the pairing based on the leading color
connection using the color flow variable while in red is the opposite pairing. The plot shows that
the momenta of the color connected quarks tend to form a small opening angle and the overlap
between the two curves, i.e. where the interference effects might be sizable, is negligible. This
implies that in the experimental analysis the pairing should be done based on this variable.
Importantly, the same conclusions can be drawn in the presence of new physics contributions to
the contact terms.

There is a potential caveat to the above argument: the color flow approximation ignores the
interference terms that are higher order in 1/NC, where NC is number of colors. Let us con-
sider a process with two interfering amplitudes with the final state quarks exchanged, for ex-
ample in uu→ uuh. The differential cross section receives three contributions proportional
to |F f f ′

L (t13, t24)|2, |F f f ′
L (t13, t24)F

f f ′
L (t14, t23)| and |F f f ′

L (t14, t23)|2, where ti j = (pi − p j)
2 =
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Figure 1: Leading order parton level simulation of the Higgs VBF production at 13 TeV pp c.m. energy
(from Ref. [7]). Show in blue is the distribution in the opening angle of the color connected incoming
and outgoing quarks ](~p3,~p1), while in red is the distribution for the opposite pairing, ∠(~p3,~p2). The
left plot is for the SM, while the plot on the right is for a specific NP benchmark.

−2EiE j(1− cosθi j). For the validity of the momentum expansion it is important that the mo-
mentum transfers (ti j) remain smaller than the hypothesized scale of new physics. On the other
hand, imposing the VBF cuts, the interference terms turns out to depend on one small and one
large momentum transfer. However, thanks to the pole structure of the form factors, these inter-
ference effects turns out to give a very small contribution. Therefore, we can safely state that
the momentum transfers marked with the leading color flow are reliable control variables of the
momentum expansion validity.

In some realistic experimental analyses, after reconstructing the momenta of the two VBF
tagged jets and the Higgs boson, one can compute the relevant momentum transfers q1 and q2,
adopting the pairing based on the opening angle. However, for some interesting Higgs decays
modes, such as h→ 2`2ν , it is not possible to reconstruct the Higgs boson momentum. In this
case, a good approximation of the momentum transfer is the jet pT . This can be understood by
explicitly computing the momentum transfer q2

1,2 in the limit |pT |l+l−E jet and for a Higgs pro-
duced close to threshold. Let us consider the partonic momenta in c.o.m. frame for the process:

p1 = (E,~0,E), p2 = (E,~0,−E), p3 = (E ′1,~pT 1,
√

E ′21 − p2
T 1) and p4 = (E ′2,~pT 2,

√
E ′22 − p2

T 2).

Conservation of energy for the whole process dictates 2E = E ′1+E ′2+Eh, where E2
h is the Higgs

energy, usually of order mh if the Higgs is not strongly boosted. In this case E−E ′i = ∆Eil+l−E
since the process is symmetric for 1↔ 2. For each leg, energy and momentum conservation
(along the z axis) give

{
qz

i = E−
√

E ′2i − p2
Ti

q0
i = E−E ′i

→





q0
i −qz

i =
√

E ′2i − p2
Ti−E ′i ≈−

p2
Ti

2E ′i

q0
i +qz

i ≈ 2∆Ei +
p2

Ti
2E ′i

. (54)
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Figure 2: Leading order parton level simulation of the Higgs VBF production at 13 TeV pp c.m. en-
ergy [7]. Shown here is the density histogram in two variables; the outgoing quark pT and the momentum
transfer

√
−q2 with the initial “color-connected” quark. The left plot is for the SM, while the plot on the

right is for a specific NP benchmark.

Putting together these two relations one gets

q2
i = (q0

i )
2− p2

Ti− (qz
i )

2 =−p2
Ti +(q0

i −qz
i )(q

0
i +qz

i )≈−p2
Ti−

p2
Ti∆Ei

2E ′i
+O(p4

Ti/E ′2) . (55)

We can thus conclude that, for a Higgs produced near threshold (∆Eil+l−E ′), q2 ≈−p2
T .

To illustrate the above conclusion, in Fig. 2 we show a density histogram in two variables: the
outgoing quark pT and the momentum transfer

√
−q2 obtained from the correct color flow pair-

ing (the left and the right plots are for the SM and for a specific NP benchmark, respectively).
The plots indicate the strong correlation of the jet pT with the momentum transfer

√
−q2 as-

sociated with the correct color pairing. We stress that this conclusion holds both within and
beyond the SM.

Given the strong q2↔ p2
T correlation, we strongly encourage the experimental collaborations to

report the unfolded measurement of the double differential distributions in the two VBF tagged
jet pT ’s: F̃(pT j1, pT j2). This measurable distribution is closely related to the form factor en-
tering the amplitude decomposition, FL(q2

1,q
2
2), and encode (in a model-independent way) the

dynamical information about the high-energy behavior of the process. Moreover, the extraction
of the PO in VBF must be done preserving the validity of the momentum expansion: the latter
can be checked and enforced setting appropriate upper cuts on the pT distribution. As an ex-
ample, in Fig. 3, we show the prediction in the SM (left plot) and in the specific NP benchmark
(right plot) of the normalized pT -ordered double differential distribution.
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Figure 3: Double differential distribution in the two VBF-tagged jet pT for VBF Higgs production at
13 TeV LHC [7]. The distribution is normalized such that the total sum of events in all bins is 1. (Left)
Prediction in the SM. (Right) Prediction for NP in εWuL = 0.05.

6.2 Associated vector boson plus Higgs production

Higgs production in association with a W or Z boson are respectively the third and fourth Higgs
production processes in the SM, by total cross section. Combined with VBF studies, they offer
other important handles to disentangle the various Higgs PO. Due to the lower cross section,
this process is mainly studied in the highest-rate Higgs decay channels, such as h→ bb̄ and
WW ∗. The drawback of these channels is the background, which is overwhelming in the bb̄
case and of the same order as the signal in the WW ∗ channels. Nonetheless, kinematical cuts,
such as the Higgs pT in the bb̄ case, and the use of multivariate analysis allow the experiments
to precisely extract the the signal rates from these measurements.

An important improvement for future studies of these channels with the much higher luminos-
ity which will be available, is to study differential distributions in some specific kinematical
variables. In Section 5.1.2 we showed that the invariant mass of the V h system is the most
important observable in this process, since the form factors directly depend on it. In those
channels where the V h invariant mass can not be reconstructed due to the presence of neu-
trinos, another observable which shows some correlation with the q2 is the pT of the vector
boson, or equivalently of the Higgs, as can be seen in the Fig. 4. Even though this corre-
lation is not as good as the one between the jet pT and the momentum transfer in the VBF
channel, a measurement of the vector boson (or Higgs) pT spectrum, i.e. of some form factor
F̃V h(pTV ) would still offer important information on the underlying structure of the form fac-
tors appearing in Eq. (52), FqiZ

L (q2) or Gqi jW
L (q2). The invariant mass of the V h system is given

by m2
V h = q2 = (pV + ph)

2 = m2
V +m2

h +2pV · ph. Going in the center of mass frame, we have
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Figure 4: The correlation between the Zh invariant mass and the pT of the Z boson in Zh associate
production at the 13TeV LHC in the SM (left plot) and for a BSM point κZZ = 1, εZuL = 0.1 (right
plot) [7]. A very similar correlation is present in the Wh channel.

pV = (EV ,~pT , pz) and ph = (Eh,−~pT ,−pz), where Ei =
√

m2
i + p2

T + p2
z (i =V,h). Computing

m2
V h explicitly:

m2
V h = m2

V +m2
h +2p2

T +2p2
z +2

√
m2

V + p2
T + p2

z

√
m2

h + p2
T + p2

z
|pT |→∞−→ 4p2

T . (56)

For pz = 0 this equation gives the minimum q2 for a given pT , which can be seen as the left edge
of the distributions in the Fig. 4. This is already a valuable information, for example the boosted
Higgs regime used in some bb̄ analysis implies a lower cut on the q2: a bin with pT > 300 GeV
implies

√
q2& 630 GeV, which could be a problem for the validity of the momentum expansion.

In the Wh process, if the W decays leptonically its pT can not be reconstructed independently of
the Higgs decay channel. One could think that the pT of the charged lepton from the W decay
would be correlated with the Wh invariant mass, but we checked that there is no significant
correlation between the two observables.

6.3 Validity of the momentum expansion

In order to control the momentum expansion at the basis of the PO composition, it is necessary
to set an upper cut on appropriate kinematical variables. These are the pT of the leading VBF-
tagged jet in VBF, and the V h invariant mass (or the pT of the massive gauge boson) in VH.

The momentum expansion of the form factors in Eq. (49) makes sense only if the higher order
terms in q2

1,2 are suppressed. This leads to a consistency condition,

εX f q2
max . m2

Z g f
X , (57)
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where q2
max is the largest momentum transfer in the process. A priori we don’t know which is

the size of the εX f or, equivalently, the effective scale of new physics. However, a posteriori
we can verify by means of Eq. (57) if we are allowed to truncate the momentum expansion
to the first non-trivial terms. In VBF, setting a cut-off on pT we implicitly define a value of
qmax. Extracting the εX f for p j

T < (p j
T )

max ≈ qmax we can check if Eq. (57) is satisfied. Ideally,
the experimental collaborations should perform the extraction of the εX f for different values of
(p j

T )
max optimizing the range according to the results obtained. The issue is completely analog

in VH, where the q2
max is controlled by m2

V h.

Even more important is matching the PO approach with a differential measurement of the
cross-section as function of p j

T , that could be achieved via the so-called template-cross-section
method. In such distribution a possible break-down of the momentum expansion at the basis of
the PO decomposition could indeed be seen (or excluded) directly by data.

A further check to assess the validity of the momentum expansion is obtained comparing the
fit performed including the full quadratic dependence of the distributions, as function on the
PO, with the fit in which such distributions are linearized in δκX ≡ κX −κSM

X and εX . The idea
behind this procedure is that the quadratic corrections to physical observable in δκX and εX
are formally of the same order as the interference of the first neglected term in Eq. (49) with
the leading SM contribution. If the two fits yields significantly different results, the difference
can be used as an estimate of the uncertainty due to the neglected higher-order terms in the
momentum expansion. However, as discussed in detail in Ref. [7], such procedure naturally
leads to a large overestimate of the uncertainty. This is because in the linearized fit only a
few linear combinations of the PO enter the observables, and thus the number of independent
constraints derived from data is effectively reduced. On general grounds, the fit obtained with
the full quadratic dependence should be considered as the most reliable result, provided that the
obtained PO satisfy the consistency condition in Eq. (57).

7 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary to de-
scribe various sets of Higgs decay amplitudes and productions cross sections. We list them
below separating four set of observables:

i) the Yukawa decay modes (h→ f f̄ );

ii) the EW decays (h→ γγ, f f̄ γ,4 f );

iii) the EW production production cross sections (VBF and VH);

iv) the non-EW production cross sections (gluon fusion and tt̄H) and the total Higgs decay
width.
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We list the PO needed for a completely general analysis, and the reduction of the number of
independent PO obtained under well-defined symmetry hypotheses, such as CP invariance or
flavor universality. The latter can be more efficiently tested considering specific sub-sets of
observables.

7.1 Yukawa modes

As discussed in Sec. 2.1 the h→ f f̄ amplitudes are characterized by two independent PO (κ f
and λ CP

f ) for each fermion species. Considering only the decay channels relevant for LHC, the
full set of 8 parameters is:

κb,κc,κτ ,κµ ,λ
CP
b ,λ CP

c ,λ CP
τ ,λ CP

µ . (58)

Assuming CP conservation (that implies λ CP
f = 0 for each f ) the number of PO is reduced to 4.

This is also the number of independent PO effectively measurable if the spin polarization of the
final-state fermions is not accessible. The corresponding physical PO are the Γ(h→ f f̄ ) partial
widths (see Table 1).

7.2 Higgs EW decays

The category of EW decays includes a long list of channels; however, not all of them are ac-
cessible at the LHC. The clean neutral current processes h→ e+e−µ+µ−, h→ e+e−e+e− and
h→ µ+µ−µ+µ−, together with the photon channels h→ γγ and h→ `+`−γ , can be described
in terms of 11 real parameters:

κZZ,κZγ ,κγγ ,εZZ,ε
CP
ZZ ,λ

CP
Zγ ,λ

CP
γγ ,εZeL ,εZeR ,εZµL ,εZµR (59)

(of which only the subset {κγγ ,κZγ ,λ
CP
γγ ,λCP

Zγ
} is necessary to describe h→ γγ and h→ `+`−γ).

The charged-current process h→ ν̄eeµ̄νµ needs 7 further independent real parameters to be
completely specified:

κWW ,εWW ,εCP
WW (real) + εWeL ,εW µL (complex) . (60)

Finally, the mixed processes h→ e+e−νν̄ and h→ µ+µ−νν̄ can be described by a subset of
the coefficients already introduced plus 2 further real contact interactions coefficients:

εZνe ,εZνµ
. (61)

This brings the total number of (real) parameters to 20 for all the (EW) decays involving muons,
electrons, and photons.

The extension to discuss h→ 4 f or h→ f f̄ γ decays with one or two pairs of tau leptons is
straightforward: it requires the introduction of the corresponding set of contact terms (εZτL ,εZτR ,
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εWτL ,εZντ
). Similarly, quark contact terms need to be introduced if one or two lepton pairs are

replaced by a quark pair.

A first simple restriction in the number of parameters is obtained by assuming flavor universal-
ity. This hypothesis imply that the contact terms are the same for all flavors. In particular, for
muon and electron modes, this implies

εZeL = εZµL , εZeR = εZµR , εZνe = εZνµ
, εWeL = εW µL . (62)

Technically, this correspond to assume an underlying U(N`)
2 flavor symmetry, for the N` gen-

erations of leptons considered (namely the maximal flavor symmetry compatible with the SM
gauge group).

Since the εW`L parameters are complex in general, the relations (62) allow to reduce the total
number of parameters to 15. This assumption can be tested directly from data by comparing the
extraction of the contact terms from h→ 2e2µ , h→ 4e and h→ 4µ modes.

The assumption that CP is a good approximate symmetry of the BSM sector and that the Higgs
is a CP-even state, allows us to set to zero six independent (real) coefficients:

ε
CP
ZZ = λ

CP
Zγ = λ

CP
γγ = ε

CP
WW = ImεWeL = ImεW µL = 0 . (63)

Assuming, at the same time, flavor universality, the number of free real parameters reduces to
10.

The various cases are prorated in the upper panel of Table 2: in the second column we list the
10 PO needed assuming both CP invariance and flavor universality, while in the third and fourth
column we list the additional PO needed if these hypotheses are relaxed (for the clean modes
involving only muons and electrons). The corresponding physical PO are the partial widths
reported in Table 1.

7.3 EW production processes

The fermion-independent PO present in Higgs decays appear also in EW production processes.
The additional PO appearing only in production (assuming Higgs decays to quark are not de-
tected) are the contact terms for the light quarks. In a four-flavor scheme, in absence of any
symmetry assumption, the number of independent parameters for the neutral currents contact
terms is 16 (εZqi j , where q = uL,uR,dL,dR, and i, j = 1,2): 8 real parameters for flavor diagonal
terms and 4 complex flavour-violating parameters. Similarly, there are 16 independent parame-
ters in charged currents, namely the 8 complex terms εWui

Ld j
L

and εWui
Rd j

R
. However, we can safely

reduce the number of independent PO under neglecting the terms that violates the U(1) f flavour
symmetry acting on each of the light fermion species, uR, dR, sR, cR, q(d)L , and q(s)L , where q(d,s)L
denotes the two quark doublets in the basis where down quarks are diagonal. This symmetry is
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Higgs (EW) decay amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV
h→ γγ,2eγ,2µγ κZZ,κZγ ,κγγ ,εZZ εZµL ,εZµR εCP

ZZ ,λ
CP
Zγ

,λCP
γγ4e,4µ,2e2µ εZeL ,εZeR

h→ 2e2ν ,2µ2ν ,eνµν
κWW ,εWW εZνµ

, Re(εW µL) εCP
WW , Im(εWeL)

εZνe , Re(εWeL) Im(εW µL)

Higgs (EW) production amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV

VBF neutral curr.
[

κZZ,κZγ ,εZZ
]

εZcL ,εZcR

[
εCP

ZZ ,λ
CP
Zγ

]

and Zh εZuL ,εZuR,εZdL ,εZdR εZsL ,εZsR

VBF charged curr. [ κWW ,εWW ] Re(εWcL) Im(εWuL)
and Wh Re(εWuL) Im(εWcL)

EW production and decay modes, with custodial symmetry

Amplitudes Flavor + CP Flavor Non Univ. CPV

production & decays κZZ,κZγ ,εZZ εCP
ZZ ,λ

CP
Zγ

VBF and VH only εZuL ,εZuR ,εZdL ,εZdR

εZcL ,εZcR

εZsL ,εZsR

decays only κγγ ,εZeL ,εZeR , Re(εWeL) εZµL ,εZµR λCP
γγ

Table 2: Summary of the effective couplings PO appearing in EW Higgs decays and in the VBF and
VH production cross-sections (see main text). The terms between square brakes in the middle table are
the PO present both in production and decays. The last table denote the PO needed to describe both
production and decays under the assumption of custodial symmetry.
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an exact symmetry of the SM in the limit where we neglect light quark masses. Enforcing it at
the PO level is equivalent to neglecting terms that do not interfere with SM amplitudes in the
limit of vanishing light quark masses. Under this (rather conservative) assumption, the number
of independent neutral currents contact terms reduces to 8 real parameters,

εZuR, εZcR , εZdR, εZsR, εZdL , εZsL , εZuL , εZcL , (64)

and only 2 complex parameters appear in the charged-current case:

εWui
Ld j

L
≡Vi jεWu j

L
, εWui

Rd j
R
= 0 . (65)

Similarly to the decays, a further interesting reduction of the number of parameters is obtained
assuming flavor universality or, more precisely, under the assumption of an U(2)3 symmetry
acting on the first two generations of quarks. The latter is the the maximal flavor symmetry for
the light quarks compatible with the SM gauge group. In this case the independent parameters
in this case reduces to six:

εZuL , εZuR, εZdL , εZdR , εWuL , (66)

where εWuL is complex, or five if we further neglect CP-violating contributions (in such case
εWuL is real). This case is listed in the second column of Table 2 (middle panel), where the
terms between brackets denote the PO appearing also in decays.

Custodial symmetry and the combination of EW production and decay modes

Assuming flavor universality and CP conservation, the number of independent PO necessary to
describe all EW decays and production cross sections is 15. These are the terms listed in the
second column of the first two panels of Table 2.

A further reduction of the number of independent PO is obtained under the hypothesis of cus-
todial symmetry, that relates charged and neutral current modes. The complete list of custodial
symmetry relations can be found in Refs. [2,7]. Here we only mention the one between κWW
and κZZ , noting that the presence of contact terms modify it with respect to the one known in
the context of the kappa-framework:

κWW −κZZ =−2
g

(√
2εW`L +2

mW

mZ
εZ`L

)
, (67)

where ` = e,µ . After imposing flavor and CP conservation, custodial symmetry allow a re-
duction of the number of independent PO from 15 down to 11, as shown in the lower panel of
Table 2.
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7.4 Additional PO

The remaining PO needed for a complete description of Higgs physics at the LHC are those
related to the non-EW production processes (gluon fusion and tt̄H) and to the total Higgs decay
width (i.e. NP effects in invisible or undetected decay modes).

A detailed formalism, similar to the one developed for EW production and decay process, has
not been developed yet for gluon fusion and tt̄H production process. However, it should be
stressed that the latter are on a very different footing compared to EW processes since they
involve a significantly smaller number of observables. Moreover, a smaller degrees of mod-
elization is required in order to analyze the corresponding data in generic NP frameworks. As
a result, the combination of PO for the total cross sections, and template-cross-section analyses
of the kinematical distributions, provide an efficient way to report data in a sufficiently general
and unbiased way.

More precisely, for the time being we suggest to introduce the following two PO

κ
2
gg =

σ(pp→ h)
σSM(pp→ h)

∣∣∣∣
gg−fusion

, κ
2
t =

σ(pp→ tt̄h)
σSM(pp→ tt̄h)

∣∣∣∣
Yukawa

, (68)

in close analogy to what it is presently done within the κ formalism. As far as the gluon
fusion is concerned, it is well known that the Higgs pT distribution carries additional dynamical
information about the underlying process. However, such distribution can be efficiently reported
via the template-cross-section method. Moreover, the steep fall of the pT spectrum (that is a
general consequence of the infrared structure of QCD) implies that the determination of κgg is
practically unaffected by possible NP effects in this distribution.

Finally, as far as the Higgs width is concerned, we need to introduce a single effective physical
PO to account for all the invisible or undetected Higgs decay modes. This additional partial
width must be added to the various visible partial widths in order to determine the total Higgs
width. Alternatively, it is possible to define an effective coupling PO as the ratio

κ
2
Γ =

Γtot(h)
ΓSM

tot (h)
. (69)

8 PO meet SMEFT

One of the main goals of the LHC is to perform high-precision studies of possible deviations
from the SM. Ideally, this would require the following four steps: i) for each process write
down some (QFT-compatible) amplitude allowing for SM-deviations, both for the main signal
analyzed (e.g. a given Higgs cross-section, close to the resonance) as well as for the background
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(non-resonant signal); ii) compute fiducial observables; iii) fit the signal (SM+NP) via an appro-
priate set of conventionally-defined PO, without subtracting the SM background; iv) using the
PO thus obtained to derive information on the Wilson coefficients of an appropriate Lagrangian
allowing for deviations from the SM.

In the previous sections we have discussed a convenient choice for the definition of the PO
relevant to resonant Higgs physics (steps i and iii). In this Section we outline how to address
the last step in the case of the so-called SM Effective Field Theory (SMEFT), i.e. how to extract
the Wilson coefficients of the SMEFT from the measured PO.

Before starting, it is worth stressing that PO are not Wilson coefficients, despite one can derive
a linear relation between the two sets of parameters when working at the lowest-order (LO) in
a given Lagrangian framework. The distinction between PO and Wilson coefficients is quite
clear from their different “status” in QFT: the PO provide a general parameterization a given
set of on-shell scattering amplitudes and are not Lagrangian parameters. Once a PO is observed
to deviate from its SM value we cannot, without further theoretical assumptions, to predict
deviations in other amplitudes. The latter can be obtained only using a given Lagrangian and
after extracting from data (or better from PO) the corresponding set of Wilson coefficients.
Conversely, Wilson coefficients are scale and scheme dependent parameters that require specific
theoretical prescriptions to be extracted from physical observables. This is why the PO can be
measured including only the SM THU5, while the extraction of SMEFT Wilson coefficients
require also an estimate of the corresponding SMEFT THU6.

There is a line of thought where the Wilson coefficients in any LO EFT approach to physics
beyond the SM are not actual Wilson coefficients, but parameters encoding deformation possi-
bilities. According to this line of though, PO and and Wilson coefficients are somehow the same
object. But this way of proceeding has a limited applicability, especially if a deviations from
the SM is found. Proceeding along this line one could write an ad-hoc effective Lagrangian,
do some calculations at LO (deviation parameters at tree-level), interpret the data, and limit the
considerations to answer the question “are there deviations from the SM?". If we want to go
a step further, viz. answering the question “What do the deviations from the SM mean?" then
it is important to separate the role of PO and Wilson coefficients. Indeed after extracting the
PO, two possibilities appear: i) top-down, namely employ a specific UV model, compute the
PO and try to figure out if it matches or not with the observed deviation; in such case there will
be an uncertainty in projecting down the UV model to the parameters and in the choice of the
input parameter set (IPS); ii) bottom-up, namely do a SMEFT analysis to extract from the PO
conclusions on the actual Wilson coefficients; here there will be an uncertainty from the order at
which the calculation is done, as well as a parametric uncertainty. In the following we illustrate

5By THU we mean theoretical uncertainty which has two components, parametric (PU) and missing higher
order uncertainties (MHOU)

6Although SMEFT converges to SM in the limit of zero Wilson coefficients, SMEFT and SM are different
theories in the UV.
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the basic strategy of for the latter (bottom-up) approach.

8.1 SMEFT summary

To establish our notations we observe that in the SMEFT a (lepton number preserving) ampli-
tude can be written as

A =
∞

∑
n=N

gn A
(4)

n +
∞

∑
n=N6

n

∑
l=1

∞

∑
k=1

gn
[

1
(
√

2GF Λ2)k

]l

A
(4+2k)

nl k , (70)

where g is a SM coupling. GF is the Fermi coupling constant and Λ is the cut off scale. l
is an index that indicates the number of SMEFT operator insertions leading to the amplitude,
and k indicates the inverse mass dimension of the Lagrangian terms inserted. N is a label for
each individual process, that indicates the order of the coupling dependence for the leading non
vanishing term in the SM (e.g. N = 1 for H→ VV etc. but N = 3 for H→ γγ). N6 = N for tree
initiated processes in the SM. For processes that first occur at loop level in the SM, N6 = N−2
when operators in the SMEFT can mediate such decays directly thought a contact operator, for
example, through a dim= 6 operator for H→ γγ. For instance, the Hγγ (tree) vertex is generated
by OHB = Φ† ΦBµν Bµν , by O8

HW = Φ† Bµν Bµρ Dρ Dν Φ etc. Therefore, SMEFT is a double
expansion: in g and g6 = v2

F/Λ2 for pole observables and in g,g6 E2/v2
F for off-shell ones;

furthermore, the combination of parameters gg6 A
(6)

1,1,1 defines the LO SMEFT expression for

the process while g3 g6 A
(6)

3,1,1 defines the NLO SMEFT amplitude in the perturbative expansion.

To summarize, LO SMEFT refers to dim = 6 operators in tree diagrams, sometimes called
“contact terms” while NLO SMEFT refers to one loop diagrams with a single insertion of
dim = 6 operators. One can make additional assumptions by introducing classification schemes
in SMEFT. One example of a classification scheme is the Artz-Einhorn-Wudka “potentially-
tree-generated” (PTG) scenario [15,16]. In this scheme, it is argued that classes of Wilson
coefficients for operators of dim = 6 can be argued to be tree level, or loop level (suppressed by
g2/16π2)7. In these cases the expansion in Eq.(70) is reorganized in terms of TG (we assume a
BSM model where PTG is actually TG) and LG insertions, i.e. LG contact terms and one loop
TG insertions, one loop LG insertions and two loop SM etc. It is clear that LG contact terms
alone do not suffice.

Strictly speaking we are considering here the virtual part of SMEFT, under the assumptions
that LHC PO are defined à la LEP, i.e. when QED and QCD corrections are deconvoluted.
Otherwise, the real (emission) part of SMEFT should be included and it can be shown that the
infrared/collinear part of the one-loop virtual corrections and of the real ones respect factoriza-
tion: the total = virtual + real is IR/collinear finite at O(g4 g6).

7This classification scheme corresponds only to a subset of weakly coupled and renormalizable UV physics
cases.
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It is worth nothing that SMEFT has limitations, obviously the scale should be such that E� Λ.
Understanding SM deviations in tails of distributions requires using SMEFT, but only up to the
point where it stops to be valid, or using the kappa–BSM-parameters connection, i.e. replace
SMEFT with BSM models, optimally matching to SMEFT at lower scales.

In any process, the residues of the poles corresponding to unstable particles (starting from max-
imal degree) are numbers while the non-resonant part is a multivariate function that requires
some basis, i.e. a less model independent, underlying, theory of SM deviations. That is to say,
residue of the poles can be PO by themselves, expressing them in terms of Wilson coefficients
is an operation the can be eventually postponed. The very end of the chain, the non-resonant
part, may require model dependent BSM interpretation. Numerically speaking, it depends on
the impact of the non-resonant part wich is small in gluon-fusion but not in Vector Boson Scat-
tering. Therefore, the focus for data reporting should always be on real observables, fiducial
cross sections and pseudo-observables.

To explain SMEFT in a nutshell consider a process described by some SM amplitude

ASM = ∑
i=1,n

A
(i)

SM , (71)

where i labels gauge-invariant sub-amplitudes. In general, the same process is given by a contact
term or a collection of contact terms of dim = 6; for instance, direct coupling of H to VV(V =
γ,Z,W). In order to construct the theory one has to select a set of higher-dimensional operators
and to start the complete procedure of renormalization. Of course, different sets of operators
can be interchangeable as long as they are closed under renormalization. It is a matter of fact
that renormalization is best performed when using the so-called Warsaw basis, see Ref. [17].
Moving from SM to SMEFT we obtain

A LO
SMEFT = ∑

i=1,n
A

(i)
SM + ig6 κ̂c , A NLO

SMEFT = ∑
i=1,n

κ̂i A
(i)

SM + ig6 κ̂c +g6 ∑
i=1,N

ai A
(i)

nfc , (72)

where g−1
6

=
√

2GF Λ2. The last term in Eq.(72) collects all loop contributions that do not
factorize and the coefficients ai are Wilson coefficients. The κ̂i are linear combinations of
Wislon coefficients.8 We conclude that Eq.(72) gives a consistent and convenient generalization
of the original κ-framework at the price of introducing additional, non-factorizable, terms in the
amplitude.

There are several reasons why loops should not be neglected in SMEFT, one is as follows:
consider the “off-shell”gg→ H fusion [18,19,20,21], the “contact” term is real while the SM
amplitude crosses normal thresholds, e.g. at s = 4m2

t , where s is the Higgs virtuality. Therefore,
in the interference one misses the large effect induced by the SM imaginary part while this effect

8We denote these combinations of Wilson coefficients κ̂i, rather than κi, in order to distinguish them from the
PO defined in the previous sections.
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(of the order of 5% above the tt -threshold) is properly taken into account by the inclusion of
SMEFT loops, also developing an imaginary part after crossing the same normal threshold. To
summarize, the LO part (contact term) alone shows large deviations from the SM around the tt -
threshold while the one-loop part reproduces, with the due rescaling, the SM lineshape in a case
where there is no reason to neglect the insertion of PTG operators in loops. Only the formulation
including loops gives an accurate result, with deviations of O(5%) wrt tree (uncritical as long
as experimental precision is� 10% but experiments are getting close).

8.2 Theoretical uncertainty

A theoretical uncertainty arises when the value of the Wilson coefficients in the PO scenario
is inferred. A fit defined in a perturbative expansion must always include an estimate of the
missing higher order terms (MHOU) [1]. Various ways exist to estimate this uncertainty, at any
order in perturbation theory. One can compute the same observable with different “options”,
e.g. linearization or quadratization of the squared matrix element, resummation or expansion
of the (gauge invariant) fermion part in the wave function factor for the external legs (does
not apply at tree level), variation of the renormalization scale, GF renormalization scheme or
α -scheme, etc.

A conservative estimate of the associated theoretical uncertainty is obtained by taking the enve-
lope over all “options”; the interpretation of the envelope is a log-normal distribution (this is the
solution preferred in the experimental community) or a flat Bayesian prior [22,23] (a solution
preferred in a large part of the theoretical community). It is clear that MHOU for the SM should
always be included.

The notion of MHOU has a long history but it is worth noting that there is no statistical foun-
dation and that it cannot be derived from a set of consistent (incomplete) principles. Ideally,
calculations should be repeated using a well defined (and definable) set of options, results from
different calculations should be compared and their MHOU assumptions subjectable to falsifi-
cation. Therefore, no estimate of the theoretical errors is general enough and it is clear that there
are several ways to approach the problem with conceptual differences between the bottom-up
and the top-down scenarios.

8.3 Examples

In this Section we provide a number of examples connecting PO to Wilson coefficients; results
are based on the work of Refs. [4,24], and of Refs. [25,26,27,28]. For simplicity we will confine
the presentation to CP-even couplings.

• H→ bb At tree level this amplitude is given by
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AHbb =−
1
2

g
mb

MW

[
ASM

Hbb +g6

(
aφ W−

1
4

aφ D +aφ�−ab φ

)]
, (73)

giving the following connection with Eq. (1) (note that all deviations are real):

yb
S =− i√

2
g

mb

MW

[
ASM

Hbb +g6

(
aφ W−

1
4

aφ D +aφ�−ab φ

)]
. (74)

• H→ γγ The amplitude for the process H(P)→ γ
µ
(p1)γν

(p2) can be written as

Aµν

HAA = iTHAA Tµν , M2
H Tµν = pµ

2 pν
1 − p1 · p2 gµν . (75)

The S -matrix element follows from Eq.(75) when we multiply the amplitude by the photon
polarizations eµ(p1)eν(p2); in writing Eq.(75) we have used p · e(p) = 0. A convenient way
for writing the amplitude is the following: after renormalization we neglect all fermion masses
but mt,mb and write

THAA =
g3

F s2
W

8π2 ∑
I=W,t,b

ρ
HAA
I T I

HAA ; LO +gF g6

M2
H

MW
aAA +

g3
F g6

π2 T nfc
HAA , (76)

where g2
F = 4

√
2GF M2

W and cW = MW/MZ. Note that, at this point we have selected the
{GF , MZ , MW} IPS, alternatively one could use the {α , GF , MZ} IPS where

g2
A =

4π α

ŝ2
θ

ŝ2
θ
=

1
2

[
1−
√

1−4
π α√

2GF M2
Z

]
, (77)

with a numerical difference that enters the MHOU. Referring to Eq.(72) we have

κ̂
HAA
I =

g3
F s2

W

8π2 ρ
HAA
I , κ̂

HAA
c = gF

M2
H

MW
aAA . (78)

In writing deviations in terms of Wilson coefficients we introduce the following combinations:

aZZ = s2
W

aφ B + c2
W

aφ W− sW cW aφ WB , aAA = c2
W

aφ B + s2
W

aφ W + sW cW aφ WB ,

aAZ = 2cW sW (aφ W−aφ B)+
(

2c2
W
−1
)

aφ WB . (79)

The process dependent ρ -factors are given by

ρ
proc
I = 1+g6 ∆ρ

proc
I , (80)

35



and there are additional, non-factorizable, contributions. For H → γγ the ∆ρ factors are as
follows:

∆ρ
HAA
t =

3
16

M2
H

sW M2
W

at WB +(2− s2
W
)

cW

sW

aAZ +(6− s2
W
)aAA

− 1
2

[
aφ D +2s2

W
(c2

W
aZZ−at φ−2aφ�)

] 1
s2

W

,

∆ρ
HAA
b = −3

8
M2

H

sW M2
W

ab WB +(2− s2
W
)

cW

sW

aAZ +(6− s2
W
)aAA

− 1
2

[
aφ D +2s2

W
(c2

W
aZZ +ab φ−2aφ�)

] 1
s2

W

,

∆ρ
HAA
W = (2+ s2

W
)

cW

sW

aAZ +(6+ s2
W
)aAA−

1
2

[
aφ D−2s2

W
(2aφ�+ c2

W
aZZ)

] 1
s2

W

. (81)

In the PTG scenario we only keep at φ,ab φ,aφ D and aφ� in Eq.(81). The advantage of Eq.(76) is
to establish a link between the EFT and the κ-framework, which has a validity restricted to LO.
As a matter of fact Eq.(76) tells us that appropriate κ̂ -factors can be introduced also at the loop
level; they are combinations of Wilson coefficients but we have to extend the scheme with the
inclusion of process dependent, non-factorizable, contributions.

We also derive the following result for the non-factorizable part of the amplitude:

T nfc
HAA = MW ∑

a∈{A}
T nfc

HAA(a)a , {A}= {at WB,ab WB,aAA,aAZ,aZZ} . (82)

In the PTG scenario all non-factorizable amplitudes for H→ γγ vanish. Comparing with Eq. (6)
we obtain

εγγ =−
1
2

vF

M2
H

THAA , T LO
HAA = T SM

HAA +gF g6

M2
H

MW
aAA . (83)

• H→ 4f

Few additional definitions are needed: by on-shell S-matrix for an arbitrary process (involving
external unstable particles) we mean the corresponding (amputated) Green’s function supplied
with LSZ factors and sources, computed at the (complex) poles of the external lines [29,30]. For
processes that involve stable particles this can be straightforwardly transformed into a physical
PO.

The connection of the HVV,V = Z,W (on-shell) S-matrix with the off shell vertex H→ VV
and the full process pp→ 4ψ is more complicated and is discussed in some detail in Sect. 3
of Ref. [6]. The “on-shell” S-matrix for HVV, being built with the the residue of the H−V−V
poles in pp→ 4ψ is gauge invariant by construction (it can be proved by using Nielsen iden-
tities) and represents one of the building blocks for the full process: in other words, it is a PO.
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Technically speaking the “on-shell” limit for external legs should be understood “to the complex
poles” (for a modification of the LSZ reduction formulas for unstable particles see Ref. [31])
but, as well known, at one loop we can use on-shell masses (for unstable particles) without
breaking the gauge parameter independence of the result. In order to understand the connection
with Eqs. (21)–(23), defining neutral current PO we consider the process

H(P)→ e−(p1)+ e+(p2)+ f(p3)+ f(p4) (84)

where f 6= e,νe, and introduce the following invariants: sH = P2, s1 = q2
1 = (p1 + p2)

2 and s2 =

q2
2 = (p3 + p4)

2, while si, i = 3, . . . ,5 denote the remaining invariants describing the process.
We also introduce sZ, the Z complex pole. Propagators are

∆A(i) =
1
si
, ∆Z(i) = P−1

Z (si) =
1

si− sZ
. (85)

The total amplitude for process Eq.(84) is given by the sum of different contributions, doubly Z
resonant etc.

A
(
H→ e−e+ff

)
= AZZ (sH , s1 , s2) ∆Z(s1)∆Z(s2)

+ AAA (sH , s1 , s2) ∆A(s1)∆A(s2)+AAZ (sH , s1 , s2) ∆A(s1)∆Z(s2)

+ AAZ (sH , s2 , s1) ∆Z(s1)∆A(s2)+AZ (sH , s1 , s2) ∆Z(s1)

+ AZ (sH , s2 , s1) ∆Z(s2)+AA (sH , s1 , s2) ∆A(s1)

+ AA (sH , s2 , s1) ∆A(s2)+ANR . (86)

To describe in details the various terms in Eq.(86) we introduce fermion currents defined by

Jµ

Z f (p ; q,k) = ūf(q)γ
µ

[
Vf(p2)+Af(p2)γ

5
]

vf(k)

= V +
f (p2) ūf L(q)γ

µ vf L(k)+V −f (p2) ūf R(q)γ
µ vf R(k) ,

Jµ

A f (p ; q,k) = Qf(p2) ūf(q)γ
µ vf(k) , (87)

where p = q+ k. At tree level we have

V +
f =

g
cW

(
I(3)f −Qf s2

W

)
, V −f =−gQf

s2
W

cW

, Qf = gQf sW . (88)

The amplitude for H(P)→ γ(q1)+ γ(q2) is

AAA (sH , s1 , s2) = THAA (sH , s1 , s2) Tµν (q1 , q2) Jµ

A e (q1 ; p1, p2) Jν
A f (q2 ; p3, p4) , (89)

with q2
1 = s1 and q2

2 = s2 . Similarly, the amplitude for H(P)→ Z(q1)+Z(q2) is

AZZ (sH , s1 , s2) =
[
PHZZ (sH , s1 , s2) q2µ q1ν −DHZZ (sH , s1 , s2) gµν

]
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Figure 5: Doubly-resonant (ZZ, AA or AZ) part of the amplitude for the process of Eq.(84).

Z , AZ , AZ , A
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Figure 6: Singly-resonant (Z or A) part of the amplitude for the process of Eq.(84).

× Jµ

Z e (q1 ; p1, p2) Jν
Z f (q2 ; p3, p4) . (90)

The ZZ, AA or AZ, doubly-resonant parts of the amplitude are shown in Fig. 5 while the singly,
Z or A, parts are shown in Fig. 6. For the singly-resonant amplitudes we write

AZ (sH , s1 , s2) = ūf(p3)FHZ µ (sH , s1 , s2)vf(p4)Jµ

Z,e (q1 ; p1, p2) , (91)

where the form factor F is again decomposed as follows:

ūf(p3)FHZ µ vf(p4) = ∑i F i
HZ Ci µ ,

Ci µ = { ūf(p3)γµ vf(p4) , ūf(p3)γµ γ5 vf(p4) , . . .} . (92)

Having the full amplitude we start expanding, e.g.

AZZ (sH , s1 , s2) = AZZ (sH , sZ , s2)+(s1− sZ) A(1)
ZZ (sH , s1 , s2) ,

A(1)
ZZ (sH , s1 , s2) = A(1)

ZZ (sH , s1 , sZ)+(s2− sZ) A(12)
ZZ (sH , s1 , s2) , (93)

etc. The total amplitude of Eq.(86) can be split into several components, Z doubly resonant (DR)
. . . Z singly resonant (SR) . . . non resonant (NR). Note that NR includes multi-leg functions,
up to pentagons:

ADR; ZZ = AZZ (sH , sZ , sZ) ∆Z(s1)∆Z(s2) ,
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ADR; AA = AAA (sH , 0 , 0) ∆A(s1)∆A(s2) ,

ASR; Z =
[
AZ (sH , sZ , s2)+A(2)

AZ (sH , s2 , sZ)+A(2)
ZZ (sH , sZ , s2)

]
∆Z(s1) ,

+
[
AZ (sH , sZ , s1)+A(1)

AZ (sH , s1 , sZ)+A(1)
ZZ (sH , s1 , sZ)

]
∆Z(s2) ,

ASR; A =
[
AA (sH , 0 , s2)+A(2)

AA (sH , 0 , s2)+A(2)
AZ (sH , 0 , s2)]∆A(s1)

+
[
AA (sH , 0 , s1)+A(1)

AA (sH , s1 , 0)+A(1)
AZ (sH , 0 , s1)]∆A(s2)

ADR; AZ = AAZ (sH , sZ , s1)
[
∆Z(s1)∆A(s2)+∆A(s1)∆Z(s2)

]

ANR = A(1,2)
DR; ZZ (sH , s1 , s2)+A(2,1)

DR; ZZ (sH , s1 , s2)+A(1,2)
DR; AZ (sH , s2 , s1)

+ A(2,1)
DR; AZ (sH , s1 , s2)+A(1,2)

DR; AA (sH , s1 , s2)+A(2,1)
DR; AA (sH , s1 , s2)

+ A(1)
SR; Z (sH , s1 , s2)+A(2)

SR; Z (sH , s2 , s1)+A(1)
SR; A (sH , s1 , s2)

+ A(2)
SR; A (sH , s2 , s1)+ANR . (94)

Each A amplitude is gauge parameter independent. Let us consider SMEFT at tree level, so
that

AAA (sH , s1 , s2) = ASM
AA (sH , s1 , s2)+∆AAA (sH , s1 , s2) , (95)

etc.. In ∆A we do not include loops with dim = 6 insertions. Taking f = µ and neglecting
fermion masses we obtain the following result

∆A
(
H→ e−e+µ

−
µ
+
)
=− ig3 g6 Jµ

L (q1 ; p1, p2) Jµ L (q2 ; p3, p4) ∆AL

− i
g3 g6

MW

(
q2µ q1ν −q1 ·q2 gµν

)
Jµ

L (q1 ; p1, p2) Jν
L (q2 ; p3, p4)

]
∆AT , (96)

where Jµ

L is the left-handed fermion current (fermion masses are neglected) and ∆AL ,T are the
longitudinal and transverse parts of the LO SMEFT deviations. We obtain

∆AT = 2s2
W

aAA ∆A(s1)∆A(s2)+
1
2

vl
sW

cW

aAZ

[
∆A(s1)∆Z(s2)+∆A(s2)∆Z(s1)

]

− 1
2

v2
l

aZZ

c2
W

∆Z(s1)∆Z(s2) , (97)

∆AL =
1
4

vl

c2
W

1
MW

(
aφ l V +aφ l A

) [
∆Z(s1)+∆Z(s2)

]

− 1
16

[(
7−20s2

W
+12s4

W

) aφ D

c4
W

+4v2
l

aφ�

c4
W

+8
vl

c4
W

(
aφ l V +aφ l A

)
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+ 4
(

3−7s2
W
+4s6

W

) aZZ

c4
W

−4
(

5−12s2
W
+4s4

W

) sW

c4
W

(
sW aAA + cW aAZ

)]

× MW ∆Z(s1)∆Z(s2) , (98)

where vl = 1−2s2
W

. With the help of Eqs.(97)–(98) it is straightforward to establish the relation
between the PO of Sect. 4 and the SMEFT Wilson coefficients (when the complex poles are
identified with on-shell masses). It is worth noting that we have not included dipole operators.

It is worth noting that there are subtleties when the H is off-shell, they are described in Ap-
pendix C.1 of Ref. [30]. Briefly, there is a difference between performing an analytical con-
tinuation (H virtuality→ H on-shell mass) in the off-shell decay width and using leading-pole
approximation (LPA) of Ref. [32], i.e. the DR part, where the matrix element (squared) is pro-
jected but not the phase-space. Analytical continuation is a unique, gauge invariant procedure,
the advantage of LPA is that it allows for a straightforward implementation of cuts.

In order to extend the SMEFT-PO connection to loop-level SMEFT we have to consider various
ingredients separately.

• H→ ZZ The amplitude for H(P)→ Z
µ
(p1)Zν

(p2) can be written as

Aµν

HZZ = i
(
P11

HZZ pµ

1 pν
1 +P12

HZZ pµ

1 pν
2 +P21

HZZ pµ

2 pν
1 +P22

HZZ pµ

2 pν
2 −DHZZ gµν

)
. (99)

The result in Eq.(99) is fully general and can be used to prove Ward-Slavnov-Taylor identities
(WSTI). As far as the partial decay width is concerned only P21

HZZ ≡PHZZ will be relevant, due
to p · e(p) = 0 where e is the polarization vector. Note that computing WSTI requires additional
amplitudes, i.e. H→ φ

0
γ and H→ φ

0
φ

0. The result can be written as follows:

DHZZ = −gF
MW

c2
W

ρ
HZZ
D; LO +

g3
F

π2

[
∑

I=t,b,W
ρ

HZZ
I ;D;NLO D

I
HZZ ; NLO +D

(4) ;nfc
HZZ +g6 ∑

{a}
D

(6) ;nfc
HZZ (a)

]
,

PHZZ = 2gF g6

aZZ

MW
+

g3
F

π2

[
∑

I=t,b,W
ρ

HZZ
I ;P ;NLO P

I
HZZ ; NLO +g6 ∑

{a}
P

(6) ;nfc
HZZ (a)

]
. (100)

∆ρ
HZZ
D; LO = s2

W
aAA +

[
4+ c2

W

(
1−

M2
H

M2
W

)]
aZZ + cW sW aAZ +2aφ� , (101)

∆ρ
HZZ
q ;D;NLO = ∆ρ

HZZ
q ;P;NLO = 2I(3)q aq φ +2aφ�−

1
2

aφ D +2aZZ + s2
W

aAA ,

∆ρ
HZZ
W ;D;NLO =

1
12

(
4+

1
c2

W

)
aφ D +2aφ�+ s2

W
aAA

+ s2
W

(
3cW +

5
3

1
cW

)
aAZ +

(
4+ c2

W

)
aZZ ,
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∆ρ
HZZ
W ;P;NLO = 4aφ�+

5
2

aφ D +12aZZ +3s2
W

aAA (102)

It is convenient to define sub-amplitudes; however, to respect a factorization into t,b and bosonic
components, we have to introduce the following quantities:

WH = WH W +WH t +WH b WZ = WZ W +WZ t +WZ b +∑gen WZ ;f
dZ g = dZ g ;W +∑gen dZ g ; f dZ cW

= dZ cW ;W +dZ cW ; t +dZ cW ;b +∑gen dZ cW ; f

dZ MW = dZ MW ;W +∑gen dZ MW ; f
(103)

where WΦ ;φ denotes the φ component of the Φ (LSZ) wave-function factor etc. By dZ par we
denote the (UV finite) counterterm that is needed in connecting the renormalized parameters to
an input parameter set (IPS). In the actual calculation we use IPS = {GF , MZ , MW}. Further-
more, ∑gen implies summing over all fermions and all generations, while ∑gen excludes t and b
from the sum.

D
(4) ;nfc
HZZ =

1
32

MW

c2
W

(
2∑gen

WZ ;f−∑
gen

dZMW ; f +4∑gen
dZcW ; f−2 ∑

gen
dZg ; f

)
. (104)

The connection to Eqs. (20)–(24) is given by

vF g f
Z g f ′

Z PHZZ =−2εZZ , vF g f
Z g f ′

Z (p1 · p2 PHZZ−DHZZ) = 2M2
Z κZZ . (105)

• H→WW The derivation of the amplitude for H → WW follows closely the one for
H→ ZZ.

DHWW = −gF MW ρ
HWW
D; LO +

g3
F

π2

[
∑

I=q,W
ρ

HWW
I ;D; NLO D

I
HWW ; NLO +D

(4) ;nfc
HWW +g6 ∑

{a}
D

(6) ;nfc
HWW (a)

]
,

PHWW = 2gF g6

1
MW

aφ W +
g3

F
π2

[
∑
I=q

ρ
HWW
I ;P ;NLO P

I
HWW ; NLO +g6 ∑

{a}
P

(6) ;nfc
HWW (a)

]
, (106)

where we have introduced

D
(4) ;nfc
HWW =

1
32

MW ∑gen

(
2WW ;f−dZ MW ; f−2dZ g ; f

)
. (107)

∆ρ
HWW
D; LO = s2

W

(
M2

H

MW
−5MW

)
(aAA +aAZ +aZZ)+

1
2

MW aφ D−2MW aφ� , (108)

∆ρ
HWW
q ;D;NLO = ∆ρ

HWW
q ;P;NLO = aφ t V +aφ t A +aφb V +aφb A−ab φ +2aφ�−

1
2

aφ D
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+ sW ab WB + cW ab BW +5s2
W

aAA +5cW sW aAZ +5c2
W

aZZ ,

∆ρ
HWW
W ;D; NLO =

1
96

s2
W

c2
W

aφ D +
23
12

aφ�−
35
96

aφ D

+ 4 s2
W

aAA +
1

12
sW

(
3

1
cW

+49cW

)
aAZ +

1
2

(
9c2

W
+ s2

W

)
aZZ ,

∆ρ
HWW
W ;P;NLO = 7aφ�−2aφ D +5s2

W
aAA +5cW sW aAZ +5c2

W
aZZ . (109)

These results allow us to write εWW and κWW of Eqs. (25)–(27) in terms of Wilson coefficients.

• Z→ ff Let us consider the ZfF vertex, entering the process H→ 4f:

Jµ

Z f (p ; q,k) = ūf(q)
{

γ
µ

[
Vf(p2)+Af(p2)γ

5
]
+Tf(p2)σ

µν pν vf(k)
}
. (110)

At lowest order we have deviations defined by

Vf = i I3)
f

g
cW

(
vf +g6 ∆Vf

)
, Af = i I(3)f

g
cW

(
1
2
+g6 ∆Af

)
, Tf =−

g
2

g6

mf

MW
af WB , (111)

∆Vf = aφ f V +
[
vf + c2

W

(
vf−1

)]
(

aAA +
cW

sW

aAZ−
1

4s2
W

aφ D

)
+
(
1−vf

)
c2

W
aZZ ,

∆Af = aφ f A +
1
2

(
aφ W−

1
4

aφ D

)
. (112)

where the vector couplings are vu = 1/2−2Qu s2
W

, vd = 1/2+2Qd s2
W

and u,d are generic up,
down fermions. When loops are included the decomposition in gauge invariant sub-amplitudes
is not as simple as in the previous case, fermion loops and boson loops. Here the decomposition
is given in terms of abelian and non-abelian (Z and W) parts, Q-components (those proportional
to γµ ) and L-parts (those proportional to γµ γ+). Details can be found in Sect. 6.15 of Ref. [33].
The general expression in SMEFT will not be reported here. It is worth noting that

AZff(P
2) = Ainv

Zff(M
2
Z)+

(
P2−M2

Z

)
Aξ

Zff
(P2) , (113)

where ξ denotes the collection of gauge parameters.

• W→ ud Similarly to the Z vertex we obtain

i
g

2
√

2
γ

µ

[
V(+)

F γ
++V(−)

F γ
−
]
+

g
4

g6

(
m2

U

MW
aU W−

m2
D

MW
aD W

)
σ

νµ pν , (114)
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V(+)
F = 1+

√
2g6

(
a(3)

φF +
1
2

aφ W

)
, V(−)

F =
√

2g6 aφU D . (115)

Here F is a generic doublet of components U = u or νl and D = d or l. Note that aφU D = 0 for
leptons. The general expression in SMEFT will not be reported here.

• Z→WW Triple gauge boson couplings are dscribed by the following deviations (all
momenta flowing inwards):

Vµνρ

ZWW (p1 , p2 , p3) = gcW Fµνρ (p1 , p2 , p3)+
3
2

gg6 Hµνρ (p1 , p2 , p3)
aQW

M2
W

+ gg6cW Fµνρ (p1 , p2 , p3)
[(

1−2s2
W

) ( sW

cW

aφ WB−aφ W

)
+2s2

W
aφ B +

1
4

aφ D

]

+ gg6cW sW Gµνρ (p1 , p2 , p3)
[(

1−2s2
W

) sW

cW

+2cW

]
aφ WB , (116)

Fµνρ (p1 , p2 , p3) = pρ

1 pµ

2 pν
3 − pν

1 pρ

2 pµ

3 +gνρ
(

pµ

3 p1 · p2− pµ

2 p1 · p3
)

+ gνµ
(

pρ

2 p1 · p3− pρ

1 p2 · p3
)
+gρµ (pν

1 p2 · p3− pν
3 p1 · p2) ,

Gµνρ (p1 , p2 , p3) = gνρ
(

pµ

2 − pµ

3
)
+gνµ

(
pρ

1 − pρ

2
)
+gρµ (pν

3 − pν
1 ) ,

Hµνρ (p1 , p2 , p3) = gνρ
(

pµ

3 − pµ

2
)
+gνµ

(
pρ

2 − pν
3
)
. (117)

• VBF The process that we want to consider is

u(p1)+u(p2)→ u(p3)+ e−(p4)+ e+(p5)+µ
−(p6)+µ

+(p7)+u(p8) . (118)

At LO SMEFT we introduce the triply-resonant (TR) part of the amplitude (t -channel propaga-
tors are never resonant):

Jµ

±(pi , p j) = ūpi γ
µ

γ± up j , ∆
−1
Φ
(p) = s−M2

Φ , s = p2 , (119)

A TR
LO =

[
Jµ

−(p4 , p5)(1− vl)+ Jµ

+(p4 , p5)(1+ vl)
][

J−µ (p6 , p7)(1− vl)+ J+µ (p6 , p7)(1+ vl)
]

×
[
Jν
−(p3 , p2)(1− vu)+ Jν

+(p3 , p2)(1+ vu)
][

J−ν (p8 , p1)(1− vu)+ J+ν (p8 , p1)(1+ vu)
]
,

(120)

A TR
SMEFT = − g6

4096
∆H(q1 +q2) ∏

i=1,4
∆Z(qi)

M2
W

c8
θ

ρLO A TR
LO +g6 g6 A TR;nfc

SMEFT
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∆ρLO = 2aφ�−
2M2

Z−2M2
H +q1 ·q2 +q2 ·q2

M2
W

c2
W

aZZ , (121)

where q1 = p8− p1, q2 = p3− p2 are the incoming momenta in VBF and q3 = p4 + p5, q4 =
p6 + p7 are the outgoing ones. Furthermore, γ± = 1± γ5.

8.4 SMEFT and physical PO

In this Section we describe the connection between a possible realization of physical PO and
SMEFT.

Multi pole expansion (MPE) has a dual role: as we mentioned, poles and their residues are
intimately related to the gauge invariant splitting of the amplitude (Nielsen identities); residues
of poles (after squaring the amplitude and after integration over residual variables) can be inter-
preted as physical PO, which requires factorization into subprocesses. However, gauge invariant
splitting is not the same as “factorization” of the process into sub-processes, indeed phase space
factorization requires the pole to be inside the physical region. For all technical details we refer
to the work in Sect. 3 of Ref. [6] which is based on the following decomposition of the square
of a propagator

∆ =
1

(s−M2)
2
+Γ2 M2

=
π

M Γ
δ
(
s−M2)+PV

[
1

(s−M2)
2

]
. (122)

and on the n-body decay phase space

dΦn (P, p1 . . . pn) =
1

2π
dQ2 dΦn− j+1

(
P,Q, p j+1 . . . pn

)
dΦ j

(
Q, p1 . . . p j

)
. (123)

To “complete” the decay (dΦ j) we need the δ -function in Eq.(123). We can say that the δ -part
of the resonant (squared) propagator opens the corresponding line allowing us to define physical
PO (t -channel propagators cannot be cut). Consider the process qq→ f1f1f2f2 j j, according to
the structure of the resonant poles we have different options in extracting physical PO, e.g.

σ(qq→ f1f1f2f2 j j) PO7−→ σ(qq→ H j j)Br(H→ Zf1f1)Br(Z→ f2f2) ,

σ(qq→ f1f1f2f2 j j) PO7−→ σ(qq→ ZZ j j)Br(Z→ f1f1)Br(Z→ f2f2) . (124)

There are fine points when factorizing a process into “physical” sub-processes (PO): extracting
the δ from the (squared) propagator, Eq.(122), does not necessarily factorize the phase space; if
cuts are not introduced, the interference terms among different helicities oscillate over the phase
space and drop out, i.e. we achieve factorization, see Refs. [34]. Furthermore, MPE should be
understood as “asymptotic expansion”, see Refs. [35,36], not as Narrow-Width-Approximation
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Figure 7: Building a physical PO.

(NWA). The phase space decomposition obtains by using the two parts in the propagator expan-
sion of Eq.(123): the δ -term is what we need to reconstruct PO, the PV-term (understood as a
distribution [35]) gives the remainder and PO are extracted without making any approximation.
It is worth noting that, in extracting PO, analytic continuation (on-shell masses into complex
poles) is performed only after integrating over residual variables [30].

We can illustrate the SMEFT - MPE - PO connection by using a simple but non-trivial example:
Dalitz decay of the Higgs boson, see Refs. [37,6]. Consider the process

H(P)→ f(p1)+ f(p2)+ γ(p3) , (125)

and introduce invariants sH = −P2, s = −(p1 + p2)
2 and propagators, ∆A(i) = 1/si, ∆Z(i) =

1/(si− sZ). With sH = µ2
H− i µH γH we denote the H complex pole etc. In the limit mf→ 0 the

total amplitude for process Eq.(125) is given by the sum of three contributions, Z,A-resonant
and non-resonant:

A
(
H→ ffγ

)
=
[
Aµ

Z (sH , s) ∆Z(s)+Aµ

A (sH , s) ∆A(s)
]

eµ (p3, l)+ANR , (126)

where eµ is the photon polarization vector. The two resonant components are given by

Aµ

V (sH , s) = THAV (sH , s) Tµ

ν (q , p3) Jν
V f (q ; p1, p2) , (127)

where Jµ

V f is the V fermion (f) current, V = A,Z, q = p1 + p2 and Tµν (k1 , k2) = k1 · k2 gµν −
kν

1 kµ

2 . Having the full amplitude we start expanding (MPE) according to

THAZ (sH , s) = THAZ (sH , sZ)+(s− sZ) T
(1)

HAZ (sH , s) etc. (128)
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Derivation continues till we define physical PO:

ΓPO (H→ Zγ) =
1

16π

1
MH

(
1−

µ2
Z

M2
H

)
FH→Zγ

(
sZ , µ

2
Z

)
,

ΓPO

(
Z→ ff

)
=

1
48π

1
µZ

FZ→ff
(
sZ , µ

2
Z

)
.

ΓSR
(
H→ ffγ

)
=

1
2

ΓPO (H→ Zγ)
1
γZ

ΓPO

(
Z→ ff

)
+ remainder . (129)

In the NWA the remainder is neglected while we keep it in our formulation where the goal is
extracting PO without making approximations. The interpretation in terms of SMEFT is based
on THAZ (sH , sZ). A convenient way for writing THAZ is the following:

THAZ =
g3

F
π2MZ

∑
I=W,t,b

ρ
HAZ
I T I

HAZ ;LO +gF g6

M2
H

M
aAZ +

g3
F g6

π2 T nfc
HAZ . (130)

The factorizable part is defined in terms of ρ -factors

∆ρ
HAZ
q =

(
2I(3)q aq φ +2aφ�−

1
2

aφ D +3aAA +2aZZ

)
,

∆ρ
HAZ
W =

1+6c2
W

c2
W

aφ�−
1
4

1+4c2
W

c2
W

aφ D−
1
2

1+ c2
W
−24c4

W

c2
W

aAA ,

+
1
4

(
1+12c2

W
−48c4

W

) sW

c3
W

aAZ +
1
2

1+15c2
W
−24c4

W

c2
W

aZZ . (131)

In the PTG scenario we only keep at φ,ab φ,aφ D and aφ� in Eq.(131). We also derive the following
result for the non-factorizable part of the amplitude:

T nfc
HAZ = ∑

a∈{A}
T nfc

HAZ(a)a , (132)

where {A} = {aφ t V,at BW,at WB,aφb V,ab WB,ab BW,aφ D,aAZ,aAA,aZZ}. In the PTG scenario there
are only 3 non-factorizable amplitudes for H→ γZ, those proportional to aφ t V,aφb V and aφ D.

8.5 Summary on the PO-SMEFT matching

As we have shown, there are different layers of measurable parameters that can be extracted
from LHC data. An external layer, where the kinematics is kept exact, is represented by phys-
ical PO such as ΓSR

(
H→ ffγ

)
of Eq.(129): these are similar to the σ

peak
f measured at LEP

46



and, similarly to the LEP case, can be extracted from data via a non-trivial NWA. A first in-
termediate inner layer is represented by the effective-couplings PO introduced in Section 2-6
(and summarized in Section 7): these are similar to effective Z-boson couplings (ge

V A) mea-
sured at LEP and control the parameterization of on-shell amplitudes. A further internal layer
is represented by the κ̂i introduced in this Section, that are appropriate combinations of Wilson
coefficients in the SMEFT. Finally, the innermost layer is represented by the Wilson coefficients
(or the Lagrangian couplings) of the specific EFT (or explicit NP model) employed to analyze
the data. When moving to the innermost layer in the SMEFT context we still have the option
of performing the tree-level translation, which is well defined and should be integrated with the
corresponding estimate of MHOU, or we can go to SMEFT at the loop level, again with its own
MHOU.

9 Conclusions

The experimental precision on the kinematical distributions of Higgs decays and production
cross sections is expected to significantly improve in the next few years. This will allow us
to investigate in depth a wide class of possible extensions of the SM. To reach this goal, an
accurate and sufficiently general parameterization of possible NP effects in such distributions is
needed.

The Higgs PO presented in this note are conceived exactly to fulfill this goal: they provide a
general decomposition of on-shell amplitudes involving the Higgs boson, based on analyticity,
unitarity, and crossing symmetry. A further key assumption is the absence of new light particles
in the kinematical regime of interest, or better no unknown physical poles in theses amplitudes.
These conditions ensure the generality of this approach and the possibility to match it to a wide
class of explicit NP models, including the determination of Wilson coefficients in the context of
Effective Field Theories.

As we have shown, the PO can be organized in two complementary sets: the so-called physi-
cal PO, that are nothing but a series of idealized Higgs partial decay widths, and the effective-
couplings PO, that are particularly useful for the developments of simulation tools. The two sets
are in one-to-one correspondence, and their relation is summarized in Table 1. The complete set
of effective-couplings PO that can be realistically accessed in Higgs-related measurements at the
LHC, both in production and in decays, is summarized in Section 7. The reduction of indepen-
dent PO obtained under specific symmetry assumptions (in particular flavor universality and CP
invariance) is also discussed in Section 7. In two-body processes the effective-couplings PO are
in one-to-one correspondence with the parameters of the original κ framework. A substantial
difference arises in more complicated processes, such as h→ 4 f or VBF and VH production.
Here, in order to take into account possible kinematical distortions in the decay distributions
and/or in the production cross-sections, the PO framework requires the introduction of a series
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of additional terms. These terms encode generic NP effects in the hV f f̄ amplitudes and their
complete list is summarized in Table 2.

The PO framework can be systematically improved to include the effect of higher-order QCD
and QED corrections, recovering the best up-to-date SM predictions in absence of new physics.
The effective-couplings PO should not be confused with EFT Wilson coefficients. However,
their measurement can can facilitate the extraction of Wilson coefficients in any EFT approach
to Higgs physics, as briefly illustrated in Section 8 in the context of the so-called SMEFT. These
physical and the effective-couplings PO can be considered as the most general and external
layers in the characterization physics beyond the SM, whose innermost layer is represented by
the couplings of some explicit NP model.
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