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Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC
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Figure 11: Distribution of BDT scores for the high-py subchannel of the Z{vv)H(bb) search
in the 8 TeV data set after all selection criteria have been applied. The signal expected from
a Higgs boson (my; = 125GeV), including W(#v)H events where the charged lepton is not
reconstructed, is shown added to the background and also overlaid for comparison with the
diboson background.
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For the multivariate analysis, a boosted decision tree (BDT) is trained to give a high
output value (score) for signal-like events and for events with good diphoton invariant mass
resolution, based on the following observables: (i) the photon quality determined from elec-
tromagnetic shower shape and isolation variables; (ii) the expected mass resolution; (iii) the
per-event estimate of the probability of locating the diphoton vertex within 10mm of its true
location along the beam direction; and (iv) kinematic characteristics of the photons and the
diphoton system. The kinematic variables are constructed so as to contain no information about
the invariant mass of the diphoton system. The diphoton events not satisfying the dijet selec-
tion are classified into five categories based on the output of the BDT, with category boundaries
optimized for sensitivity to a SM Higgs boson. Events in the category with smallest expected
signal-to-background ratio are rejected, leaving four categories of events. Dijet-tagged events
with BDT scores smaller than the threshold for the fourth category are also rejected. Simu-
lation studies indicate that the background in the selected event categories is dominated by
the irreducible background from QCD production of two photons and that fewer than 30% of
the diphoton events used in the analysis contain one or more misidentified photons (predomi-
nantly from y+jet production).
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For the multivariate analysis, a boosted decision tree (BDT) [119}[120] is trained to give a high
output value (score) for signal-like events and for events with good diphoton invariant mass
resolution, based on the following observables:
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For the multivariate analysis, a boosted decision tree (BDT) is trained to give a high
output value (score) for signal-like events and for events with good diphoton invariant mass
resolution, based on the following observables:
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Neyman-Pearson Lemma / Supervised learning
Discriminant Analysis / Analytical solutions
Decision Tree / Model complexity

Boosted Decision Trees / Ensemble methods
Support Vector Machines / Kernel trick

sPlot / Data-driven techniques

Artifical neural networks / Deep learning

Conclusion

Backup

@ Convolutional neural networks / Image classification

@ Recurrent neural networks / Sequential data processing
@ Bayesian methods

@ Restricted Boltzmann machines / Unsupervised learning
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Neyman-Pearson Lemma / Supervised learning

0 Neyman-Pearson Lemma / Supervised learning
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Simple example in two dimensions
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Simple example in two dimensions
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Simple example in two dimensions
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Neyman-Pearson Lemma

IX. On the Problem of the most Efficient Tests of Statistical Hypotheses.

By J. NeYMAN, Nencki Institute, Soc. Sci. Lit. Varsoviensts, and Lecturer at the
Central College of Agriculture, Warsaw, and B. S. Prarson, Department of
Applied Statistics, Unwversity College, London.

.\ PDF(XIS) _ ‘
F() - ~

X) = PDF(X|B) —

Most powerful test at a given significance level to distinguish
between two simple hypotheses (signal or background)
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Neyman-Pearson Lemma
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Neyman-Pearson Lemma
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Problem solved? No!

@ Howto obtain the signal and background PDFs?

Usually unknown!

Multiple sources of signal and background

Non gaussian PDF

Nonlinear dependencies among observables

Cannot be sampled in high dimensions (e.g. cannot fill
80-dimensional histogram with enough statistics)

e — ,,Curse of dimensionality”
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Solution: Approximate Neyman-Pearson

PDF(x]5)
PDF (x|B)

@ Neyman-Pearson Lemma f()?) =
@ Generative Models . .
Analytical approx. (LDA, QDA) f(X‘S) ~ PDF(X‘S)
o Restricted Boltzmann machine — -

o Kernel density estimator f(X|B) ~ PDF(X’B)
e Gaussian mixture model

@ Discriminative Models
o (Boosted) Decision Trees f( —’)
e Support Vector Machines
o Artificial Neural Networks

_ PDF(X]S)
~ PDF(X|B)
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More questions

@ Howto obtain training data required for these models?

o In Industry usually historical data (— time-series)
o In HEP usually simulated data (— systematics)
o Sometimes we can use real data (— data-driven techniques)

@ Howto train, optimize and evaluate the quality of the models and
compare them?

e Train model on training data (— regularization techniques)

o Optimize model on validation data (— hyper-parameter
optimization)

o Test model on test data (— ROC curves)

o Apply model on unlabeled data (— systematics)
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Classification Quality
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Classification Quality
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Classification Quality
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Classification Quality
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Discriminant Analysis / Analytical solutions

9 Discriminant Analysis / Analytical solutions
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Linear discriminant analysis

Assumes conditional PDFs are normally distributed
Assumes identical covariances of signal and background
Equivalent to commonly used Fisher's discriminant

Requires only means and covariances of sample

Separating hyperplane is linear

Signal’
Background

-4 -3 -2
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Linear discriminant analysis

Assumes conditional PDFs are normally distributed
Assumes identical covariances of signal and background
Equivalent to commonly used Fisher's discriminant

Requires only means and covariances of sample

Separating hyperplane is linear
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Quadratic discriminant analysis

@ Assumes conditional PDFs are normally distributed
@ Requires only means 1, and covariances ¥, of sample
@ Separating hyperplane is quadratic

V2T, molexp (5 (x = pty=1)T Ty (x = py=1))
V2Tl (3 (x = 1y=0) " Eymo (x — y=o0))

Background
-4 -3 -2 -1 0 1 2 3 4
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Example Classifier Quality
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Decision Tree / Model complexity

e Decision Tree / Model complexity
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Simple Decision Tree

Classifies using a number of consecutive rectangular cuts
Each cut locally maximizes a separation gain measure

Signal probability given by the purity in each leave

Interpretable (white box) model
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Complete Decision Tree
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Complete Decision Tree

Complex model performs poorly due to overfitting
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Depth dependency of decision trees
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Depth dependency of decision trees
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Depth dependency of decision trees
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Depth dependency of decision trees
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Depth dependency of decision trees
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Depth dependency of decision trees

4 ~1.0
o
3 L
=0.8
2 g
>
1 ' 0.6
Z
~ 0 2
i 0.4
()
=2
-2 =
(2]
3 202 NP AUC = 0.934
g Depth = 8 AUC = 0.853
-4 =

-4 -3 -2 -1 0 1 2 3 4 0(9.00 0.05 0.10 0.15 0.20
X False Positive Rate (Type | Error)

22 / 69 T. Keck - KIT




Multivariate Classification

CERN
School of Computing

Depth dependency of decision trees
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Overfitting

@ Model is too complex

@ Statistical fluctuations in the training data dominate predictions
@ Model does not generalize — poor performance on new data

@ Need to check for this on an independent test dataset!
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Underfitting

@ Model is too simple

@ Relevant aspects of the data are ignored

—1.0
<
I
=08
[
ES
[
' 0.6
o
~ 0 P
Soa
[
2
B
& %2 — 4« auc = 0.934
g Depth = 1 AUC = 0.825
=

4

0[9.00 0.05 0.10 0.15 0.20
X False Positive Rate (Type | Error)

24 / 69 T. Keck - KIT

CERN
School of Computing




Multivariate Classification
&
CERN

Bias-Variance dilemma

Three sources of errors:
@ Bias due to wrong modeling of the data (underfitting)
@ Variance due to sensitivity to statistical fluctuations (overfitting)
@ lrreducible error due to noise in the problem itself

E [( y— ?(z))2] — Bias [f(?)] ® 4 Var [f(x*)} + Var[y]

Total Error

rediction error

Variance

model comple>’<ity
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Model complexity

Number of Degrees of freedom (NDF) of the model
(= number of parameters)
o Input dataset
e Reduce dimensionality
o Higher statistic
e Hyperparameters (control NDF)

Depth of the tree

o Minimum number of data points per leave

o Separation gain measure (entropy, gini-index)
o Optimized using search-algorithm

@ Regularization (reduce effective NDF)

o Prune overfitted branches of the tree
o Include tree structure in separation gain measure
o Ensemble methods

Always test on an independent test dataset in the end!
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Boosted Decision Trees / Ensemble methods

e Boosted Decision Trees / Ensemble methods
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Idea

Average many simple models to obtain a robust complex model

F()?) = Z’mem()?)
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Boosting

N
fin (%) = fn-1 + argmin 3 L (yis fin-1 (%) = £(5)

_ — f(X) e Reweight events w.r.t current prediction

o Individual classifiers are simple to avoid

_—> f(X) overfitting (weak-learners)
!

@ Focus on events near the optimal

—_) f(X) separation hyper-plane

@ Loss function L is crucial

__> f3(x) o Least square — Regression

o Binomial deviance — GradientBoost
3 classification

__) Fin(X) o Exponential loss — AdaBoost

classification
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Bagging

fo(X) f(X) fa(X) fim(X)

Bagging — Use only fraction of events / features per classifier
Robustness against statistical fluctuations in the data

Embarrassingly parallel

Sampling method is crucial:

o Draw random events with replacements — Bagging
o Draw random events without replacement — Pasting
o Draw random features — Random Subspaces

30 / 69 T. Keck - KIT
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Stochastic Boosted Decision Trees

o Good out-of-the-box performance

@ Robust against over-fitting

@ Supports classification and regression
o Widely used in HEP

’\o
. Bazkground- .
-4
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Example Classifier Quality
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—— Neyman Pearson Lemma AUC = 0.934
—— Gradient Boosted Decision Tree AUC = 0.921

True Positive Rate (1 - Type Il Error)

o
o
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Further Ensemble Methods

Categorization
@ Divide feature-space into sub-spaces
o Different behavior of the data in the chosen subspaces
@ e.g. train separate classifier for Barrel and Endcap

Combination

@ Combine different classifiers
o Different regularization methods learn different aspects of the data
@ e.g. combine neural network, BDT and SVM
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Support Vector Machines / Kernel trick

e Support Vector Machines / Kernel trick
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Support vector machines

Maximum margin classifier

°
@ Quadratic problem — can be solved efficiently in O(N?)
@ Optimal for linearly separable problems

°

Slope variables allow for misclassification

X,

7
4

“
N P
p X
> &4 1
% 4
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Kernel trick

@ SVM Algorithm depends only on scalar product!
@ Replace scalar product with an arbitrary kernel function

@ Solves problem in implicitly high-dimensional space

1 -
maxg(ci, ..., cp) = ZCI 5 ZZYICI(XI “Xj)Yi<i
i P
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Kernel trick

Linear k(Xj, Xj) = Xi - X

signal -."
« Background

a
3 .
2
-1
o 1
-2, .
| signal . >0
+ Background . b
-4 -3 -2 -1 0 1 2 3 4 -2

Background
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Example Classifier Quality

=
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o
©

o
o

o
~

—— Neyman Pearson Lemma AUC = 0.934
—— RBF SVM AUC =0.913

f, —— Linear SVM AUC = 0.909

f Poly SVM AUC = 0.904

o
N
S

True Positive Rate (1 - Type Il Error)
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False Positive Rate (Type | Error)
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sPlot / Data-driven techniques

e sPlot / Data-driven techniques
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Reweighting

Requires MC and data events
Train classifier to distinguish data events and MC events

Reweight MC events using output of classifier

Train classifier to distinguish signal and background using
reweighted MC
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Side-band subtraction

@ Requires number of events in signal region and sideband

@ Compensates background events in signal region with negative
signal events from the sideband

6000

Signal Region
5000 Negative Signal Region
Background Region

4000

3000

2000

1000

-0.2 -0.1 0.0 0.1 0.2
Reconstructed Mass - Nominal Mass
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sPlot
@ Requires yields and covariance of fitted signal 4+ background model
@ Uses every event twice, as signal and as background with sPlot
weight
() = VssPDF(EIS) + Vsg PDF (56)
""" NsPDF(x:|S) + NgPDF(x;|B)

6000

Hl Signal Fit
Il Background Fit

-0.2 -0.1 0.0 0.1 0.2
Reconstructed Mass - Nominal Mass
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Example Classifier Quality

=
o

o
©

o
o

o
~

—— Ordinary ROC Integral = 0.807
—— SPlot ROC Integral = 0.793
—— Sideband ROC Integral = 0.78

True Positive Rate (Efficiency)
©
N

o
[e=)
o
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False Positive Rate (Type | Error)
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Artifical neural networks / Deep learning

e Artifical neural networks / Deep learning
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Simplest Form: Feed-Forward Network
@ The data flows from the input to the output layer (feed-forward)

f(X)=o0 (Z thida (Z W,:me,'))

@ Neurons sum up inputs and apply activation function o :[L
@ The gradient of the loss-function flows from the output to the
input layer and modifies the weights (back-propagation)

oL
Bwy =~
hidden layer Wij

L=(f(X)—t)?

output layer
X > putiay S

4
3 ot
input layer o 7
1
0

Signal «+%
+  Background

-4 -3 -2 -1 0 1 2 3 4
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Selected aspects of training

ANN yields small and fast models, but training can be
challenging

@ Stochastic gradient-descent
algorithm (Backpropagation)
o Batch-size
o Learning rate
o Momentum term (Adam)
]

Hesse Matrix (BFGS) @ Initalization
e Usually gaussian distributed

e Xavier initialization
Var(w;) = %

@ Architecture

o Number of neurons
o Number of layers
o Activation function

@ Regularization
o Weight decay aw’™w
e Dropout (ensemble)

46 / 69 T. Keck - KIT




Multivariate Classification

CERN
School of Computing

Example Classifier Quality

=
o

o
©

o
o

o
~

o
N

—— Neyman Pearson Lemma AUC = 0.934
—— Multi Layer Perceptron AUC = 0.921

True Positive Rate (1 - Type Il Error)

o
=
o
S

0.05 0.10 0.15 0.20
False Positive Rate (Type | Error)
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History (stay with me it’s fun!)

Field started in the 1950s
. and died 1969 (Minsky and Papert)

Assumed incapability to perform operations like exclusive-or

Lack of computing power

Perceptron

input layer

;xulp\ll layer

00000
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History (stay with me it’s fun!)

Field revolutionized in the 1980s by backpropagation algorithm
Slowly superseded by methods like SVM, BDTs in the 1990s

Assumed incapability to train many layers due to local minima

Lack of computing power

Multi-Layer Perceptron

input layer | [ hidden layer 1

gou!p\ll ayer

[ YORSESELXKN |
|
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History (stay with me it’s fun!)

Field revolutionized in the 2000s by deep learning

Advances it algorithms — training with many layer is possible
More statistic (big data)

Massive boost in computing power (due to GPUs)

Deep neural network

input layer | [ hidden layer 1 hidden layer 2 | [ hidden layer 3 hidden layer 4

;nulp\ll layer

XX KKK X

GUEED

i
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Today (all aboard the hype train)

@ Representation learning

@ Feed in low-level features
— learn high-level features automatically

@ HEP is getting into it as welll

Deep neural network
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Physics example
Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014 DOI: 10.1038/ncomms5308
Searching for exotic particles in high-energy
physics with deep learning
a
‘ " w Table 1 | Performance for Higgs benchmark.
- - ﬁ Technig Low-level High-level Comp
He X ) AUC
H b BDT 073 (0.01) 0.78 (0.01 0.81 (0.01)
g AN NN 0733 (0.007)  0.777 (0.001) 0.816 (0.004)
DN 0.880 (0.001)  0.800 (<0.001)  0.885 (0.002)
b Discovery significance
NN 256 310 37
b . DN 496 360 5.00
g
t
we
w-
g t
b
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Image recognition example
Show and Tell: A Neural Image Caption Generator
Oriol Vinyals Alexander Toshev Samy Bengio Dumitru Erhan
Google Google Google Google
vinyals@google.com toshev@google.com bengio@google.com dumitru@google.com

Jreiom Language A group of people
Deep CNN Generating shopping at an
RNN outdoor market.

0,

] @ There are many
vegetables at the
fruit stand.

@ Generate description using recurrent neural network

53 /69 T. Keck - KIT




Multivariate Classification

CERN
School of Computing

Conclusion

6 Conclusion
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Key messages of the day

@ Use multivariate analysis / classification algorithms
@ Always test / validate on an independent dataset

@ There is a revolution in the field right now!
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Backup

Backup
@ Convolutional neural networks / Image classification

@ Recurrent neural networks / Sequential data processing

@ Bayesian methods
@ Restricted Boltzmann machines / Unsupervised learning
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Multivariate Classification

Convolutional neural network

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEYRE IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GMI’EHFEUHO(W.

.. AND CHECK WHETHER
Tr\E PHOTD 15 OF A BIRD.

ILLNEDAESFARCH

i

IN C5, IT CAN BE HARD TO EXPLAIN
THE DIFFERENCE BETWEEN THE ERSY
AND THE VIRTUALLY IMPOSSIBLE.

http://xkcd.com/1425/

Lots of different birds in different poses, scales and positions!
T. Keck - KIT
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Invariance under Transformations

Different strategies to build a classifier which is invariant under
given transformations in the input space:

Extract hand-crafted features that are invariant

Use transformed copies during the training phase

Penalize change in the output under input transformation —
Tangent propagation

Build invariance properties into structure of neural network
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Park or Bird?
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0
=3
o
= [sunst > Pur
lo
A ° o
° No
o No Paog
o o
o o
: : cat Peat
: : o o
convolution + max pooling vec |4 \:
nonlinearity | o
convolution + pooling layers fully connected layers  Nx binary classification

http://parkorbird.flickr.com/
Convolutional layer

Learnable filters (e.g. edge detector) organized in feature maps

°
@ All units take inputs only from small subregions
@ Al units are share the same weights

o

All units detect same pattern but in different locations
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Park or Bird?
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7° Poirg
0
o
Mo
lo
A ° o
o No
° Mo Paog
o o
o o
o \e
: : o o
convolution + max pooling vec |4 \:
nonlinearity | o
convolution + pooling layers fully connected layers  Nx binary classification

http://parkorbird.flickr.com/
Pooling layer
o Take inputs from small receptive fields in the feature maps
@ Reduce resolution and computation in following layers

@ Increases insensitivity against small shifts
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Park or Bird?
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7° Poirg
0
o
Mo
lo
A ° o
o No
° Mo Paog
o o
o o
o \e
: : o o
convolution + max pooling vec |4 \:
nonlinearity | °
convolution + pooling layers fully connected layers  Nx binary classification

http://parkorbird.flickr.com/
Multiple pairs of convolution and pooling layers
@ Each stage has a larger degree of invariance
@ Number of features increases as resolution is reduced

o Final layer is fully connected with softmax output
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Recurrent neural network

Multivariate Classification

input layer

[ Y N_\

hidden layer 1

hidden layer 2

XXX

CERN
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output layer

3O
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Recurrent neural network

input layer

[ X AN\

hidden layer 1

hidden layer 2

X _K_X

CERN
School of Computing

N

output layer
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Long Short-Term Memory

Output

Xt

Forget
Gate

https://en.wikipedia.org/wiki/File:Long_Short_Term_Memory.png
Can remember a value for a long time period
Input gate decides when to update the stored value

Output gate decides when to output the stored value

Forget gate decides when to forget the stored value

— Can process sequential data (e.g. text and speech)
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Character level language model

target chars: “e” ‘I @ “o

1.0 0.5 0.1 0.2

22 0.3 0.5 1.5
output layer 50 . 5 i

4.1 1.2 -1.1 2.2

R R B

0.3 1.0 0.1 |w nn| 03
hidden layer | -0.1 0.3 05 |— 0.9

0.9 0.1 -0.3 0.7

T T T ]W_xh

1 0 0 0
i 0 1 0 0
input layer 0 5 ; ;i

0 0 0 0
input chars:  “h” ug” “)p g

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Applied on C-Code

static int indicate_policy(void)
{
int error;
if (fd == MARN EPT) {
if (ss->segment < mem total)
unblock graph_and set blocked();

else
ret = 1;
goto bail;

}

for (i = 0; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
}
}
return segtable;

}

T. Keck - KIT
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Bayes’ theorem

Li|(<elih(‘)od ) Pr(ior d)istribution
p(D|H)p(H
p(H|D) =

Posterior distribution P( D )

Evidence

Probability is defined as the degree of belief
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The Bayesian approach to machine learning

Why should our prior of the model complexity (hypothesis)
change with the size of the training data?
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The Bayesian approach to machine learning

Why should our prior of the model complexity (hypothesis)
change with the size of the training data?

@ Assume prior p(w) for all (hyper-) parameters in the model
@ Maximize the posterior p(w|D) ~ p(w)p(D|w)

@ Prediction is performed by marginalizing with respect to the
posterior distribution

p(t|%, D) = / p(t]%, )p(W| D)di7

@ Mathematically complex due to analytically intractable integrals
@ Reproduces weight-decay in case of gaussian prior

Hyper parameters can be chosen automatically using bayesian
methods e.g. automatic relevance determination (ARD)
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Restricted Boltzmann machines

@ Unsupervised learning of an representation
e Hidden (latent) Variables try to reproduce input layer activation

@ Can be stacked on top of each other

visible units
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Two dimensional example

signal ..
Background

Signal . "
Background

-4 -3 -2 -1 0 1 2 3 4
X

Hidden layer activation of a RBM with two input and two hidden
neurons
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Combined with BDT

| - signa g
+ Background l‘l
-3 -2 -1

BDT trained on original input data (left) and on hidden
representation of the RBM (right)
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Example Classifier Quality

=
o

o
©

o
o

o
~

—— Neyman Pearson Lemma AUC = 0.934
—— RBM + BDT AUC =0.922
—— BDT AUC =0.922

RBM AUC = 0.909

o
[N

True Positive Rate (1 - Type Il Error)

o
=)
o
S

0.05 0.10 0.15 0.20
False Positive Rate (Type | Error)
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