CERN

Multivariate Classification Exercise School of Computing

Introduction

In this exercise we will learn the basic usage of three widely used machine
learning frameworks. The exercises 2-4 are independent from one another.

We use a Monte Carlo simulated dataset from the Belle IT experiment. The
Belle IT experiment is located in Tsukuba, Japan at the SuperKEKB asym-
metric electron-positron collider, which operates at a center of mass energy
of 10.58 GeV. If an electron-positron pair annihilates into a virtual photon
two different physical processes are likely to happen: either an intermediate
Y (4S) resonance (a bound bb state) is produced, which decays into two entan-
gled B mesons e e~ — Y(4S) — BB, or two unbound quarks are produced
ete™ = ¢7 (¢ € {udsc}), as shown in the figure below. We call the former a

BB event, and the later a continuum event.

25 T T T T T
= [sy
T Y(1S)]
g b
ERN °(23 1
- T (2S)
e s T(3S) B-meson events
[[. : .
@ 50 t - t EL]MS)]
[t b :
o [¢ toy AL L T S ..
continuum events (u,d,s,c) :

9.44 946 10.00 10.02 10.34 10.37 10.54 10.58 10.62
W (GeV/c))

In this exercise we want to identify the continuum events in order
to discard them in our analysis. This is called continuum suppression.

1 Understanding the data

Understanding the data is usually an important and time-consuming step during
data analysis. Detecting errors due to data collection, preprocessing the data
to cast it in a usable format for the task at hand, check for differences between
simulated and real data, choosing sensible pre-cuts to minimize the required
computing resources and systematic uncertainties. We will keep this part very
short here.

Our dataset contains:

e 12 features for each of the 10 most high energetic tracks in each event:

— the four-momentum (P,, P,, P,, E);

— the particle identification information for Kaons Kid, electrons eid,
muons muid, and protons prid;

— the impact parameters of the track d,,d,,d, and the pValue of the
track fit.

e 8 features for each of the 10 most high energetic unmatched clusters in
each event:

CERN

Multivariate Classification Exercise School of Computing

— the four-momentum (P,, P, P,, E);

— the number of hits per cluster cluster N Hits, a time information
clusterTiming, the ratio of 3x3 and 5x5 crystal cells around the
center of the cluster cluster E9E25 and the region of the cluster
cluster Reg: backward, barrel or forward.

e the Monte Carlo truth isContinuumEvent.

The are two ROOQOT files: data.root contains ~ 30000 continuum and 10000
BB events, data_validation.root contains nearly the same amount of data
represents an independent test sample. In addition both datasets are also avail-
able as pickled pandas.DataFrames in the corresponding files named data.df
and data_validation.df.

The two figures below show a feature of the most high energetic track and
cluster, respectively. Events without any tracks or clusters are stored as 0, hence
the peaks at 0.

| B 5B B 33
07 [Continuum 1.0| {3 Continuum

Normalized number of event
b
Normalized number of event

U'“ 0 0.5 1.0 1.5 2.0 2.5 3.0
Detection region of most high energetic cluster

U
3

-2 -1 0 1 2
P? of most high energetic track

Look at the distributions for some of the variables and familiarize yourself
with the dataset. You can use the python script plot.py to do this, for
instance try python3 plot.py Pz_TO to reproduce the plot above.

Now you can start with one of the three exercises below. All examples write
out a result text file, containing the estimated continuum probabilities for each
event in the independent validation dataset. At the end, you can compare the
different frameworks by executing python3 evaluate.py. Using the default
settings it should look like this in the end:

Receiver operating characteristic

1.0

o
©

o
)

.~ SKLearn_LDA (area 0.84)
—— SKLearn_BDT (area 0.93)
—— Tensorflow_DNN (area 0.97)

TMVA_LDA (area 0.84)

TMVA_BDT (area 0.92)

True Positive Rate
o
~

o
[N

0.2 0.4 0.6 0.8 1.0
False Positive Rate

o
f==)
oFf,

CERN

Multivariate Classification Exercise School of Computing

2 TMVA

The Toolkit for Multivariate Data Analysis with ROOT (TMVA) is tradi-
tionally used in high energy physics. It is shipped with ROOT and inte-
grates well in the workflow of data analysis in high energy physics, which
typically employs ROOT’s TTree. The documentation is available here http:
//tmva.sourceforge.net/docu/TMVAUsersGuide. pdf.

Take a look into the ROOT Macro TMVATrain.C. Train a Linear Dis-
crimant and a Boosted Decision Tree using this macro by executing it
with ROOT root -1 TMVATrain.C. Use the output of TMVA to an-
swer the following questions: Which method is better? Are the methods
overfitted? Which variables contribute the most to the classification?

--- Factory : Ranking input variables (method specific)...
- LDA : Ranking result (top variable is best ranked)
LDA e
- LDA : Rank : Variable : Discr. power
1 : Energy_Cl 1.774e-01
2 : clusterE9E25_C2 1.698e-01
3 : prid T2 1.695e-01
4 : eld TO : 1.691e-01
5 : prid_T1 : 1.585e-01
6 : muid_TO : 1.214e-01
7 : prid_T@ 1.129e-01
8 : Kid_T2 1.855e-01
9 : Energy T2 1.024e-01
--- raciory :
-- Factory : Evaluation results ranked by best signal efficiency and purity (area)
Factory R L e L e e D]
Factory : Signal efficiency at bkg eff.(error): | Sepa- Signifi-
Factory : @8=0.01 @=0.39 ROC-integ. | ration: cance:
-- Factory © il
-- Factory H .532(04) 0.783(03) 0.906(02) 0.919 | 0.561 1.470
--- Factory .330(03) 0.622(03) 0.794(03) 0.842 | 0.360 0.911
--- Factory
-- Factory
-- Factory
--- Factory
--- Factory Signal efficiency: from test sample (from training sample)
-- Factory @B=0.01 @B=0.10 @B=0.30
--- Factory :
--- Factory : BOT 0.532 (0.884) 0.783 (0.928) 0.906 (0.957)
-- Factory : LDA : 0.330 (0.345) 0.622 (0.628) 0.794 (0.792)
-- Factory :

TMVA automatically splits the provided dataset into a training and test
dataset, and can create a number of control plots to check for overfitting and
evaluate the performance of the classifiers. This functionality is provided by the
TMVAGui

Start TMVAGui using root -e "TMVA::TMVAGui(\"TMVA.root\")".
Look at the control plots 4b, 5a and 5b; and think about which con-
clusions you can derive from them.

CERN

Multivariate Classification Exercise School of Computing

TMVA Plotting Macros for Classification (SRR E

{1a) Input variables {training sample}

(2a) Input variable correlations {scatter profiles)

(2) Input Warisble Linear Correlation Coefficients

(4a) Classifier Output Distributions (test sample)

(4b) Classifier Output Distributions (test and training samples superimposed)

(4c) Classifier Probability Distributions (test sample)

(4d) Classifier Rarity Distributions (test sample)

(Ba) Classifier Cut Efficiencies

(55} Classifier Background Rejection s Signal EFficiency (ROC curve)
(56} Classifier 1/(Backar, Efficisncy) us Signal Efficiency (ROC curve)

(B) Parallel Coordinates (requires ROOT-version >= 5,17}

(7) PDFs of Classifiers (requires "CreatsfYAPdFs" option set)

(8) Likelihood Reference Distributiuans
(9a] Network Architecture (HLF)
(9] Network Convergence Test (HLP)
(10} Decizion Trees (EDT)

(11} Decision Tree Control Plots (EDT)
(12} Flot Foams (PDEFoan)

(13) General Banst Contral Plots
(14} Quit

At this point it should be clear that our classifiers are heavily overfitted.
Overfitting can be avoided by decreasing the number of degrees of freedom,
which are controlled by the hyper-parameters of the method. The TMVA BDT
has a lot of them, see http://tmva.sourceforge.net/optionRef.html for
more information.

Take a look at the available configuration options of the BDT method.
Afterwards change the configuration of the BDT to avoid overfitting and
improve its performance. A good starting point is the configuration of
the BDT which is already included in the macro but commented out.

The line looks like this:

//factory->BookMethod (TMVA: : Types: :kBDT, "BDT",
"H:V:NTrees=100:BoostType=Grad:Shrinkage=0.1:
UseBaggedBoost :BaggedSampleFraction=0.5:nCuts=100:
MaxDepth=3:IgnoreNegWeightsInTraining");

Advanced

Another possibility to reduce overfitting, is to restrict the dimensionality of
the input space. You can define arbitrary functions of your input variables by
adding new variables e.g. Pt := sqrt(Px**2 + Py*x2). Unfortunately this
works only for the Factory and not for the Reader. There is also the possibility
to add transformations of the input features e.g. VarTransform=N,D added
to the configuration string of a method would normalizes and decorrelates the
input features before passing them on to the method.

Reduce the number of variables by exploiting the cylindrical symmetry
of the detector. Do you encounter any problems?

TMVA provides a large number of methods and options. In the example
above we used a linear discriminant and a BDT, however you are free to test
out other methods and options. The code for training an SVM or MLP is
already included in the macro, but is commented out. Be careful, the SVM and

CERN

Multivariate Classification Exercise School of Computing

MLP may take very long to train and are less ,,stable” than one would expect.
You may want to continue playing around with these methods in your free time.

3 SKLearn

Scikit-Learn (aka SKlearn) is a machine learning library build on top of the scipy
project, which aims to provide a full data analysis stack for science written in
python. Hence SKLearn integrates well with famous python libraries like numpy,
pandas and matplotlib. You can find more information on these frameworks here
http://scikit-learn.org and here https://wuw.scipy.org.

Take a look into the SKLearn example SKLearnTrain.py. Train a Lin-
ear Discrimant and a Boosted Decision Tree using this python file by
executing it with python python3 SKLearnTrain.py. Use the output
of SKLearn to answer the following questions: Which method is better?
Are the methods overfitted? Which variables contribute the most to the
classification?

The methods are already quite good although we used the default hyper-
parameters. You can check out the available options online http://scikit-learn.
org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.
html

Take a look at the available configuration options of the BDT method.
Afterwards change the configuration of the BDT to improve its perfor-
mance. A good starting point is the default configuration of the BDT.

The line looks like this:

#bdt = sklearn.ensemble.GradientBoostingClassifier(
n_estimators=150, subsample=0.5,
max_depth=4, min_samples_leaf=100)

Advanced

We can automatize the process of searching the optimal hyper-parameter set. A
simple approach is the systematic search on a grid. Of course you could use any
optimization algorithm, however SKLearn already implements the grid-search
via the GridSearchCV class. CV stands for cross validation, this algorithm
automatically splits the dataset into N pieces and uses N-1 to train, and the
last one to estimate the performance, it does this N times choosing a different
piece to test each time.

Perform a grid search to find the optimal hyperparameter set for the
BDT.

The example file contains already code to train a Quadratic Discrimant, a
SVM and an MLP. Unfortunately the MLP implementation is not in the stable
SKLearn version included, only in the current development version. You may
want to continue playing around with these methods in your free time.

CERN

Multivariate Classification Exercise School of Computing

4 Tensorflow

Tensorflow a the Deep Learning Framework developed by google. It is possible
to create very sophisticated machine learning algorithms using this framework
and train them on large data samples. On the other hand, training such a
model can take a long time even if one employs GPU clusters. Therefore an
already trained model is included in the example directory. You can find more
information here https://www.tensorflow.org/.

You can visualize the model using the tensorboard. Start it using
tensorboard --logdir ., nextopenhttp://0.0.0.0:6006 in your we-
browser and click on GRAPHS. It should look like in the figure below.
Follow the flow of the tensors through the network starting at the nodes
called placeholder.

€ (< 0.0.0.0:
TensorBoard evenTs wiGES Auoio crapHs HisTosRAVS
F Frtosoreen
¥ OownbadPNG M me, " "
L honrs global_step. e
Run \ =

Seesion] betal pover):~
runs (0 1 e

betazpover):- e

.........

Apply the trained model by executing python3 TensorflowApply.py
and compare it to the classifiers of the previous exercises using the
evaluate.py script.

The code used to train the Tensorflow model is in the file TensorflowTrain.py,
you can take a look if you are interested. The performance of the deep neural
network outperforms the other methods, but to be fair, we cheated! Do you
see the two advantages of the Tensorflow model that the other methods didn’t
have?

