

Discussion/Questions (muon beam, SIDIS and GPDs)

- Longitudinal target polarisation
 - Is the longitudinal spin program indeed over?
- Transverse target polarisation
 - more deuteron data (1 year)
 - TMD evolution, different energies (intensity?), multi-D
- TFR Fracture functions
- How to interpret future JLab12 data
 - Berger criterion
- Muon beam intensity are we at the limit?
 - crazy ideas…?

Ed. Berger criterion (separation of CFR &TFR)

The typical hadronic correlation length in rapidity is

$$\Delta y_h \simeq 2$$

hep-ph/00101

if the dynamics of quark fragmentation is to be studied independently of "contamination" from target fragmentation, it is necessary that $Y \gtrsim 4$, or, equivalently, that

$$W_X = \left[\frac{Q^2(1-x)}{x}\right]^{1/2} \gtrsim 7.4 \text{GeV}.$$
 (17)

If the inequality Eq. (17) is satisfied, it should be possible to measure fragmentation functions $D(z, Q^2)$ over essentially the full range of z, 0 < z < 1. Somewhat smaller values of W_X may be adequate if attention is restricted to the large z region. As Y is increased above 2, or

$$W_X \gtrsim 3 \text{ GeV},$$
 (18)

the quark and target fragmentation regions begin to separate. As long as $Y \gtrsim 2$, the hadrons with the largest values of z are most likely quark fragments. Data¹⁴ from $e^+e^- \rightarrow h X$ show that a distinct function D(z) may have developed for $z \gtrsim 0.5$ at W = 3 GeV. The region extends to $z \simeq 0.2$ for W = 4.8 GeV, and to $z \simeq 0.1$ for W = 7.4 GeV. For z > 0.3, fragmentation functions have been obtained from data¹⁵ on $ep \rightarrow e'\pi^{\pm} X$ at E = 11.5 GeV, with $3 < W_X < 4$ GeV.

Kinematic coverage

• GPDs

- quest for GPD E, PT with recoil detector
- double DVCS, suppressed α_{em} , any chance?
- COMPASS & JLAB complementary
- meson beams, GPDs in Drell-Yan
- Future facilities
 - EIC, NICA, CEIC