A window of opportunity for SIDIS measurements at COMPASS beyond 2020

Outlook

- The talk is the result of the discussion in the SIDIS and Transversity groups
- It will cover these fields of interest:
 - Longitudinally polarised SIDIS
 - Transversely polarised SIDIS
 - Azimuthal asymmetries on unpolarised targets
 - Extras

WHERE DO WE STAND?

COMPASS data taking

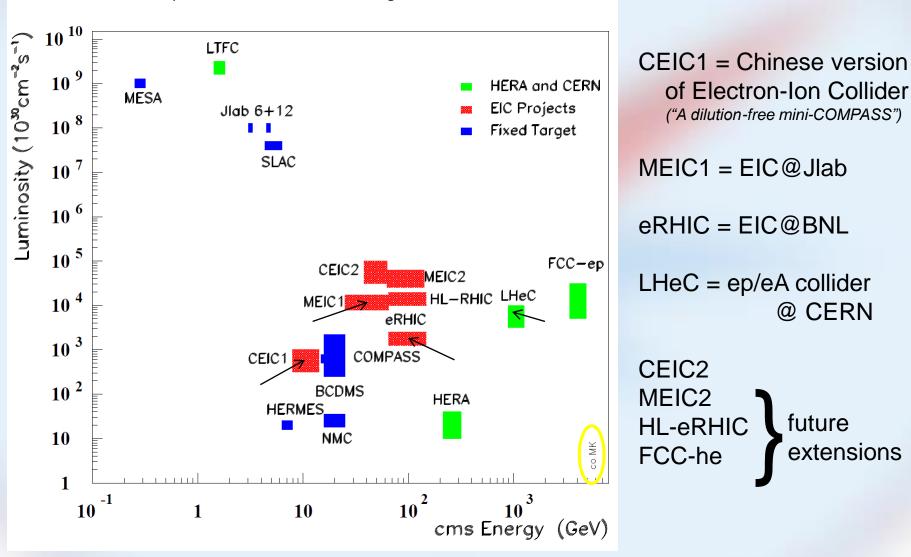
muon beam	deuteron (⁶ LiD) PT	2002 2003 2004	80% L/20% T target polarisation			
		2006	L target polarisation			
	proton (NH ₃) PT	2007	50% L /50% T target polarisation			
Hadron	LH target	2008 2009				
muon beam	proton (NH ₃) PT	2010	T target polarisation			
		2011	L target polarisation			
Hadron	Ni target	2012	Primakoff			
muon beam	LH2 target 2012 Pilot DVCS &		Pilot DVCS & unpol. SIDIS			
Hadron	Proton (NH3) DT	2014	Pilot DY run			
	PT	2015	DY run			
muon beam	LH2 target	2016 2017	DVCS & unpol. SIDIS			

Measurements with the target longitudinally polarized:

Year	Obs.	
2006	$A_{LL}^{2h}(Q^2 < 0)$	$\Delta g/g$
2007	$g_1^d(x)$,	Γ_1^d , $\Delta\Sigma$
2008	$A_{1,d}^{h^+-h^-}$	$\Delta u_v + \Delta d_v$
2009	$A_{1,d}$, $A_{1,d}^{\pi^\pm}$, $A_{1,d}^{K^\pm}$	$\Delta u_{\nu} + \Delta d_{\nu}, \Delta \bar{u} + \Delta \bar{d}, \Delta s (= \Delta \bar{s})$
2010	$g_1^p(x)$,	Γ_1^{NS} , $ g_A/g_V $
2010	$A_{1,d}$, $A_{1,d}^{\pi^{\pm}}$, $A_{1,d}^{K^{\pm}}$, $A_{1,p}$, $A_{1,p}^{\pi^{\pm}}$, $A_{1,p}^{K^{\pm}}$	Δu , Δd , $\Delta \overline{u}$, $\Delta \overline{d}$, $\Delta \overline{d}$, Δs , $\Delta \overline{s}$
2010	$\sin\phi$, $\sin 2\phi$, $\sin 3\phi$, $\cos\phi$ asyms	$h_L, f_L^{\perp}, h_1, f_{1T}^{\perp}, h_{1L}^{\perp}, h_{1T}^{\perp}, h_{1L}^{\perp}, g_L^{\perp}, g_L^{\perp}, g_{1T}$
2013	A_{LL}^{2h}	$\Delta g/g$
2013	$A_D^{\gamma N}$	$\Delta g/g$ in LO and NLO
2015	$g_1^p(x)$	Γ_1^{NS} , $\Delta\Sigma$, $\Delta u + \Delta \overline{u} \cdots$
2015	A_{LL}^p	NLO QCD fits for $\Delta g/g$

Measurements with the target transversely polarized:

Year	Obs		2
2005	$A^h_{Siv,d}, A^h_{Col,d}$	First ⁶ LiD data	
2006	$A^h_{Siv,d}$, $A^h_{Col,d}$	Full ⁶ LiD statistics	
2009	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full ⁶ LiD statistics	
2010	$A^h_{Siv,p}$, $A^h_{Col,p}$	2007 NH ₃ data	
2012	$A_{UT,d}^{sin\phi_{RS}}$, $A_{UT,p}^{sin\phi_{RS}}$	Full ⁶ LiD	
2012	$A^h_{Siv,p}$, $A^h_{Col,p}$	Full NH ₃ statistics	
2012	$A_{UT,d}^{sin(\phi_{ ho}-\phi_{S})}$, $A_{UT,p}^{sin(\phi_{ ho}-\phi_{S})}$	Exclusive $ ho^0$	
2013	$A_{UT,d}^{(\phi_ ho,\phi_S)}$, $A_{UT,p}^{(\phi_ ho,\phi_S)}$	Exclusive ρ^0 , all asyms.	
2014	$A_{UT,d}^{sin\phi_{RS}}$, $A_{UT,p}^{sin\phi_{RS}}$	Full ⁶ LiD and NH ₃	
2014	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full NH ₃ statistics	
2015	Interplay $A_{UT,p}^{sin\phi_{RS}}$ vs $A_{Col,p}^{h}$	Full NH ₃ statistics	


Measurements with unpolarised targets:

Year	Obs	
2013	$dn^h/(dN^\mu dz dp_T^2)$	Unpolarized multiplicities on d, 2004
2014	$A_{UU,d}^{\cos \phi_h}$, $A_{UU,d}^{\cos 2\phi_h}$, $A_{LU,d}^{\sin \phi_h}$	2004, part
2016	$dn^{\pi}/(dN^{\mu}dz)$	Unpolarized multiplicities on d, 2006
2016	$dn^h/(dN^\mu dz dp_T^2)$	Unpolarized multiplicities on d, 2006
2016	$dn^{K}/(dN^{\mu}dz)$	Unpolarized multiplicities on d, 2006

WHAT WILL BE OUR PLAY GROUND?

The CM Energy vs Luminosity Landscape

Lepton–Proton Scattering Facilities

JLab 12

Run Group Schedule – Tentative

Run Group	Days	2015	2016	2017	2018	2019	2020	2021	Remai n
All Run Groups	936		CND	FT RICH MM			Trans. PT	525	411
	180*	2-3	7?						
PRad PRadius	15*		10 ?						
CLAS12 KPP				15					
RG-A (proton)	139*			20 50		CEB		ctrometer	69*
RG-F (BoNuS)	42*				40				2
RG-B (deut.)	90*				45				45*
RG-C (NH ₃)	120				15	45			60
RG-C-b (ND ₃)	65					35			30
RG-E (Hadr.)	60					20	15		25
RG-G (TT)	110*						55		55
RG-D (CT)	60						30		30
RG-K (LiD)	55							55	

3/17/16

CLAS collaboartion meeting, JLab 2/23-26

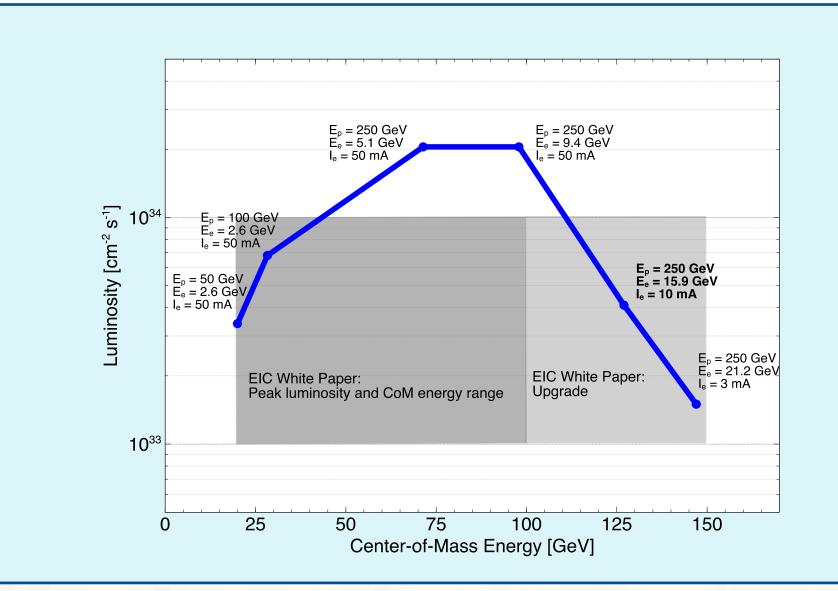
1

JLab 12- Hall B CLAS12

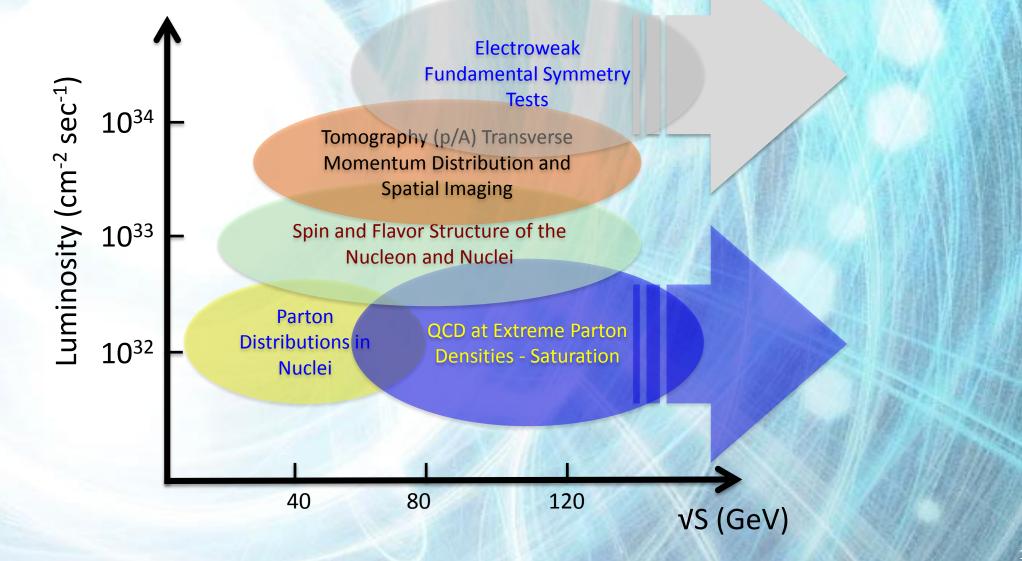
Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Run Group	Target
E12-06-108	Hard exclusive electro-production of π^0 , η	Stoler	В	80		RICH (1 sector)			liquid H ₂
E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	A	60]	Forward tagger			H ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	A	80]			А	
E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40	1				
E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	A-	119	139		11	F. Sabatié	
E12-12-001	Timelike Compton Scatt. & J/w production in e+e-	Nadel-Turonski	A-	120	1				
E12-12-007	Exclusive φ meson electroproduction with CLAS12	Stoler, Weiss	B+	60	1				
E12-11-005a	Photoproduction of the very strangest baryon	Guo	NR	(120)	1				
E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30		Neutron			liquid
PR12-11-109 (a)	Dihadron DIS production	Avakian			90	detector RICH (1 sector)	11	B K. Hafidi	D ₂ targe
E12-09-007a	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	30	1	Forward tagger			
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	56	1				
E12-11-003	DVCS on neutron target	Niccolai	A	90	1				
E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	A	80		Polarized target			NH ₃
E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	A	120	1	RICH (1 sector) Forward tagger	11	с	ND ₃
E12-07-107	Spin-Orbit Correl. with Longitudinally polarized target	Avakian	A-	103	185				
PR12-11-109 (b)	Dihadron studies on long. polarized target	Avakian]			S. Kuhn	
E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A-	80]				
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103	1				
E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60		11	D	Nuclear
E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	E	Nuclear
E12-06-113	Free Neutron structure at large x	Bueltman	A	40	42	Radial TPC	11	F	Gas D ₂
E12-14-001	EMC effect in spin structure functions	Brooks	B+	55	55	Pol. LiH target	11	G	LiH
TOTAL run time 1466 (1586) 631								•	

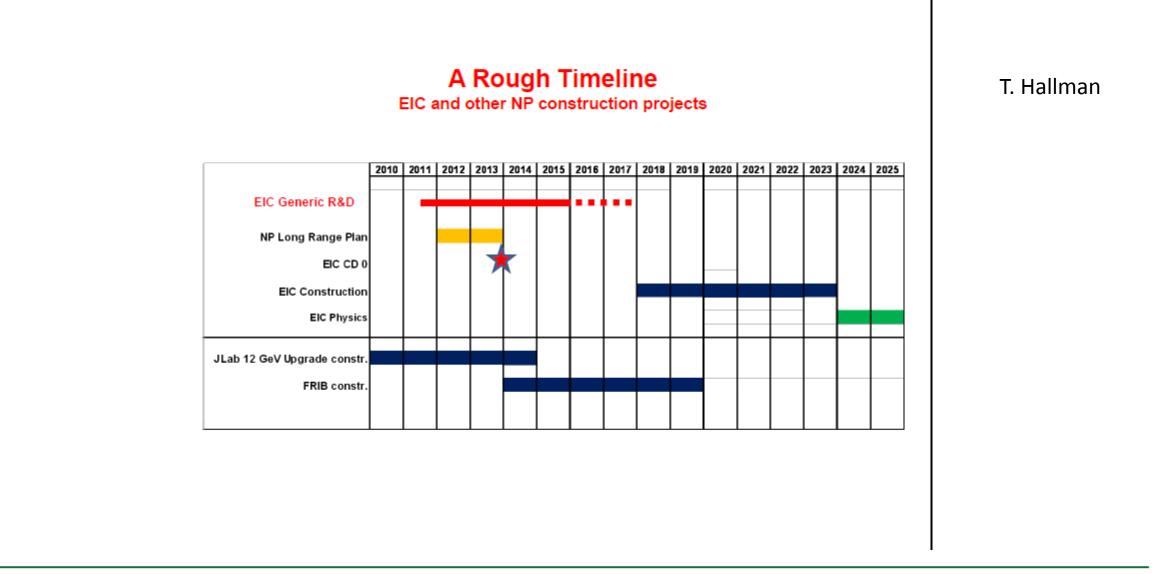

C1 approved proposals & non-CLAS12

Proposal	Physics	Contact	Rating	Days	Group	Equipment	Energy	Group	Target
C12-11-111	SIDIS on transverse polarized target	Contalbrigo	А	110					
C12-12-009	Transversity w/ di-hadron on transvere target	Avakian	А	110	110	Transverse	11	G	HD
C12-12-010	DVCS with transverse polarized target in CLAS12	Elouadrhriri	А	110		target			
All transverse ta	rget proposals	330	110						
C12-11-006	Heavy Photon Search at Jefferson Lab (HPS)	Jaros	А	180	180	New setup in alcove	2.2, 6.6	н	Nuclear
E12-11-106	11-106 High Precision Measurement of the Proton Gasparian A Charge Radius		15	15	Primex	1.1, 2.2	I	H2 gas	
Beam time requ	est from CLAS12 C! experiments + non-CLAS12 e		525	305					
Beam time from	Beam time from approved CLAS12 experiments (from previous page)								
TOTAL Beam tim	ne for all Hall B experiments	1991	936						


Optimistically, we may run 90 PAC days per year. To run all experiments as run groups with full beam time will require 936/90 ≈ 10 years.

12


The US Electron Ion Collider Project


eRHIC peak luminosity vs. CoM energy

Physics vs. Luminosity & Energy

It is Good to Push, But Hazardous to Make Projections

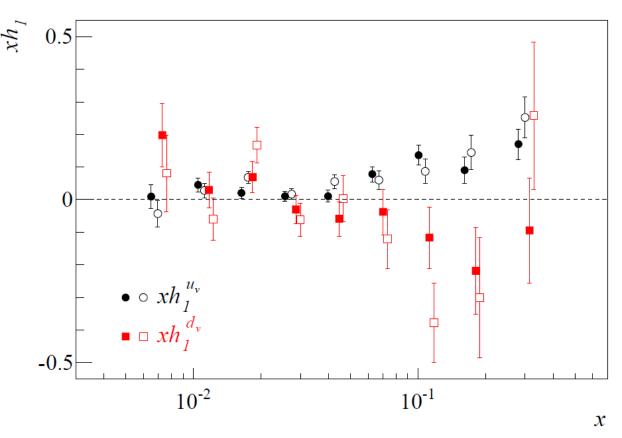
WHAT REMAINS TO BE DONE?

- The longitudinal SPIN physics programme has been completed
 - $-\Delta q$, Γ, $\Delta \Sigma$ have been measured
 - What was possible to do for Δg has been done
 - Enough statistics will be collected in 2016/17 to measure multiplicities and fix once and for all the $s(x, Q^2)$ PDF

FOR THESE REASONS THE PROGRAM IS EXPECTED TO BE OVER WITH THE END OF PHASE-II

Suggestions from the Transversity group

 Let us start with what was sent in 2012 for the European Strategy group


Table 2: Summary of the different physics items for the far and near future. Already approved measurements are in bold.

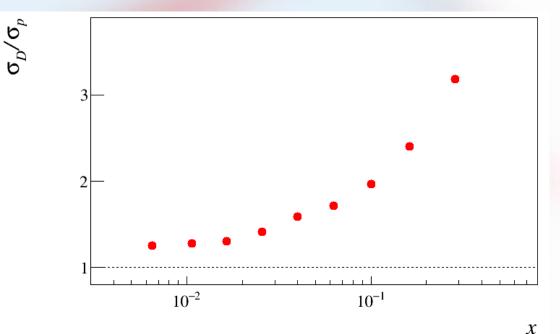
	physics item	key aspects of the measurement				
	Н	RPD, Beam Charge and Spin Asymmetries				
GPD	<i>t</i> -slope parameter B	$d\sigma/dt$				
	Е	transversely polarized proton target				
	hadron multiplicities for π and K	PID and absolute acceptance				
SIDIS	$oldsymbol{h}_{1,u}^{\perp},oldsymbol{h}_{1,d}^{\perp}$	azimuthal modulations and PID				
51015	h_1^d with same accuracy as h_1^u	transversely polarized deuteron target				
	f_1^{\perp} evolution	100 GeV and transversely polarized proton target				
	sign change for f_1^{\perp} and h_1^{\perp}	transversely polarized proton target				
	universality of TMD PDFs	higher statistics with transversely polarized proton target				
DY	flavor separation	transversely polarized deuteron target				
	test of the Lam-Tung relation	hydrogen target				
	EMC effect in DY	different nuclear targets				

Transversity from our data

- Poin-to-poiny extraction [Physical Review D 91, 014034 (2015)]
- Keep in mind that we are the only one to have measured TSA on deuteron

Openpoints/squares – from dihadronClosedpoints/squares – from Collins

ERRORS ON h_1^d ARE A FACTOR 4 LARGER THAT THE ONES ON h_1^u


COMPASS UNCHAINED

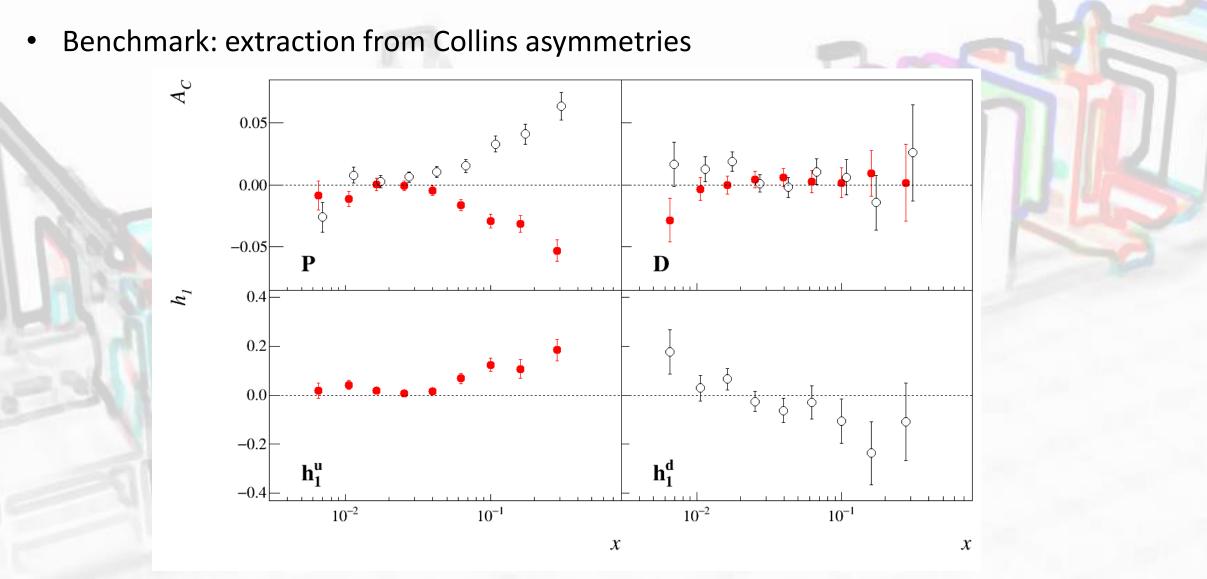
From ⁶*LiD* (2002 – 2004) to $NH_3(2007 - 2010)$

- We have done many progresses:
 - New 3 cells target / 1.3 gain due to larger diameter
 - New superconducting magnet / Factor 2.5 increase of acceptance at large x
 - New large x trigger with LAST / Factor
 2 increase at large x
 - Statistics (partially lost given $\frac{f_p P_{pT}}{f_D P_{DT}} = 0.6$)

ALL IN ALL A TOTAL FACTOR OF >10

COMPASS UNCHAINED

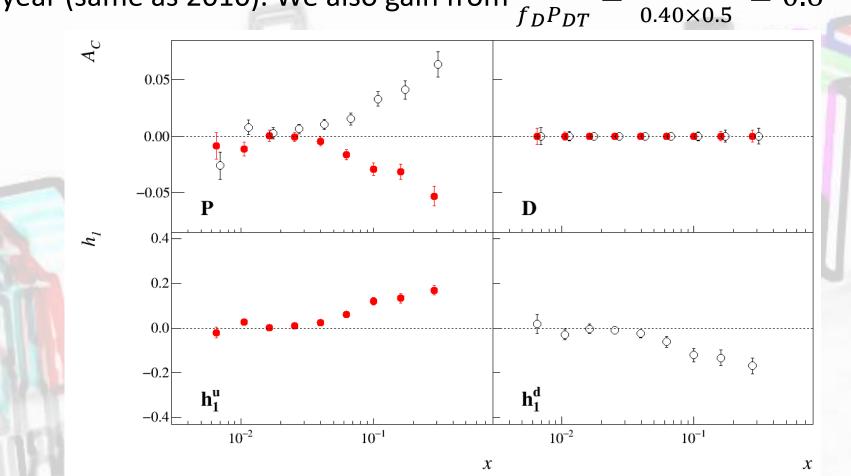
From Collins asymmetries to transversity


Following Physical Review D 91, 014034 (2015), in the valence region

$$xh_{1}^{u} = \frac{1}{5} \frac{1}{\tilde{a}_{P}^{h}(1-\tilde{\alpha})} \left[\left(xf_{p}^{+}A_{p}^{+} - xf_{p}^{-}A_{p}^{-} \right) + \frac{1}{3} \left(xf_{d}^{+}A_{d}^{+} - xf_{d}^{-}A_{d}^{-} \right) \right]$$

$$xh_{1}^{d} = \frac{1}{5} \frac{1}{\tilde{a}_{P}^{h}(1-\tilde{\alpha})} \left[\frac{4}{3} \left(xf_{d}^{+}A_{d}^{+} - xf_{d}^{-}A_{d}^{-} \right) - \left(xf_{p}^{+}A_{p}^{+} - xf_{p}^{-}A_{p}^{-} \right) \right]$$

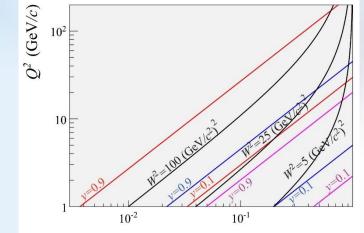
With \tilde{a}_{P}^{h} and $\tilde{\alpha}$ constants


New deuteron data

COMPASS UNCHAINED

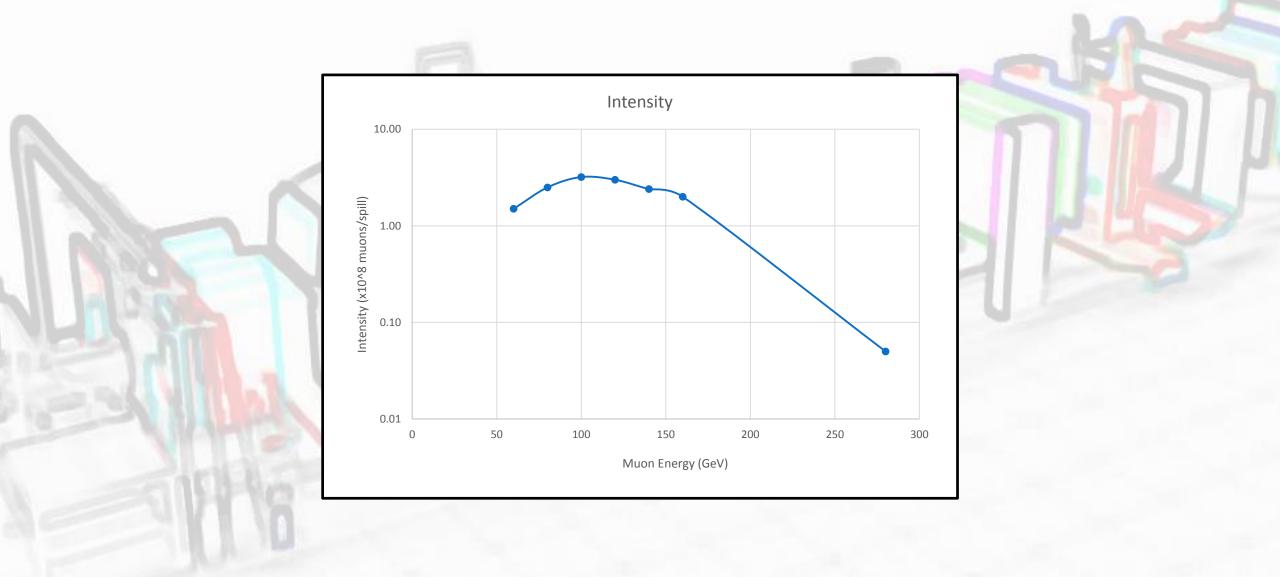
New deuteron data

• 1 full year (same as 2010). We also gain from $\frac{f_p P_{pT}}{f_p P_{pT}} = \frac{0.155 \times 0.8}{0.40 \times 0.5} = 0.6$

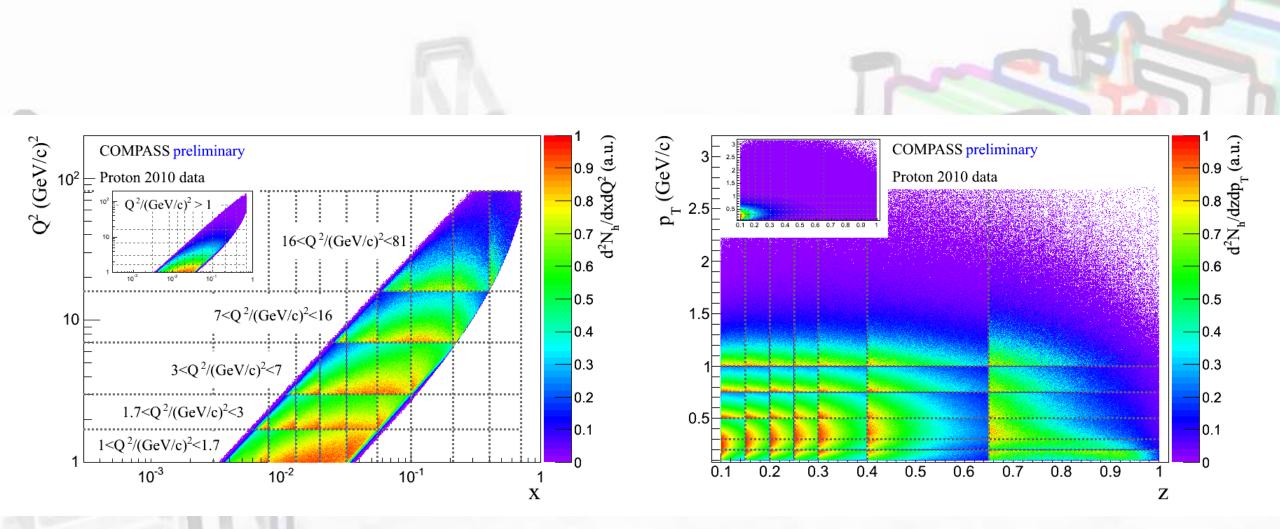


THIS IS A MEASUREMENT THAT WILL IMPACT OUR KNOWLEDGE, KEY MEASUREMENT FOR THIS OR NEXT PHASE

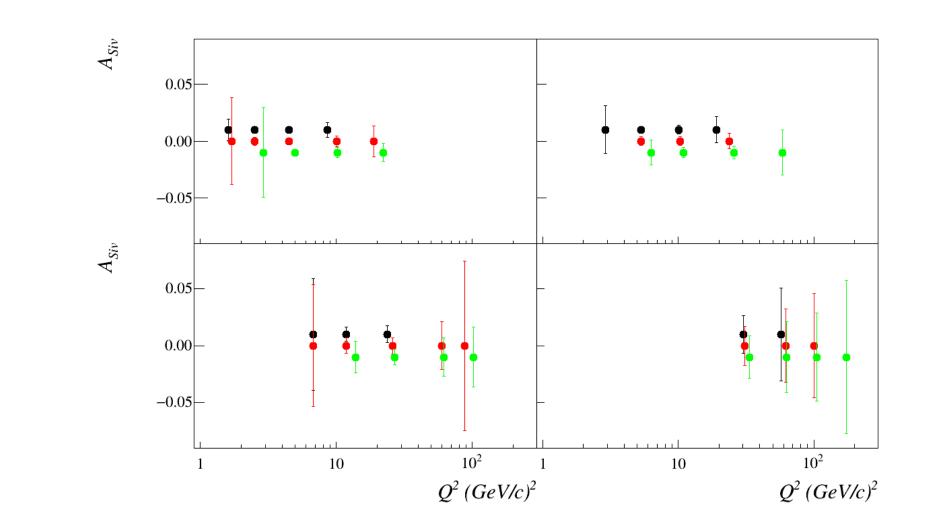
RUNNING AD DIFFERENT ENERGIES TO ADDRESS SIVERS EVOLUTION?


M2 may span between 60 and 280 GeV for muons

- Let's have a look at $\begin{cases} 80 \text{ GeV}, \sqrt{s} = 10 \text{ GeV}, \sigma_{DIS} = 176 \text{ nb} \\ 160 \text{ GeV}, \sqrt{s} = 13 \text{ GeV}, \sigma_{DIS} = 178 \text{ nb} \\ 280 \text{ GeV}, \sqrt{s} = 17 \text{ GeV}, \sigma_{DIS} = 188 \text{ nb} \end{cases}$
- The low y, large Q^2 region is cut away by the $W > 5 \text{ GeV}/c^2$
- Intensity? That's a problem.
- Of course: Multi-D is mandatory



x


Running at different energies for evolution

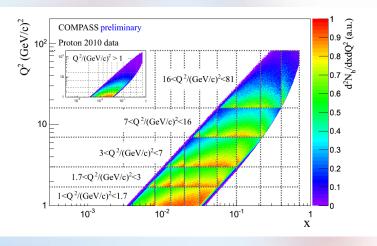
Multi D

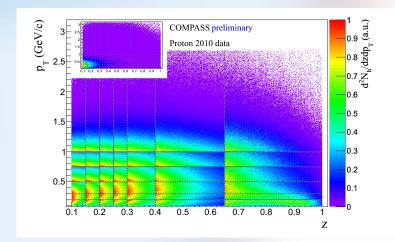
Running at different energies for evolution

COMMENT ON TMD studies

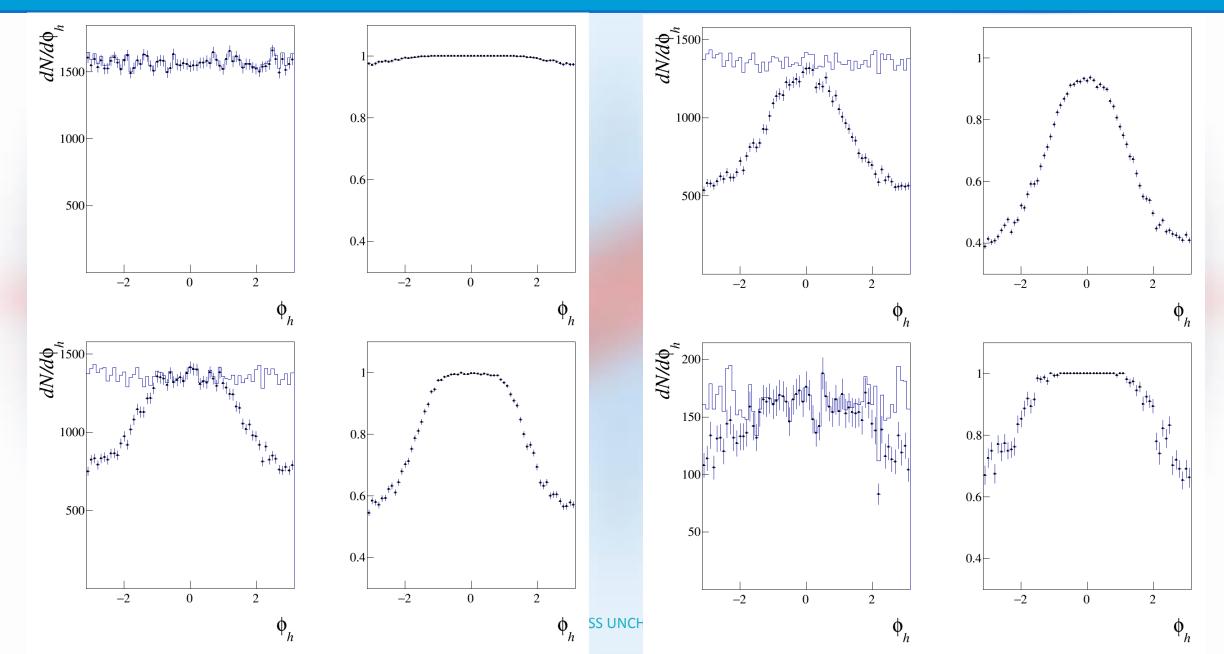
- SIDIS has opened the way to this field about 10 years ago:
 - Collins and DiHadron asymmetries on protons are sizeable
 - The Sivers asymmetry is also different from zero and we are now probing it's pseudo universality
 - The other TMDs are small, compatible to zero in most of the cases, at present precision
 - We measured sizeable $\cos \phi$ and $\cos 2\phi$ asymmetries but we don't really know yet if the Boer-Mulder TMD PDF is different from zero
 - The measurement of the azimuthal asymmetries on protons is one of the tasks of the next two years run

STUDYING BOER-MULDERS IN THE MULTIDIMENSIONAL PHASE SPACE?

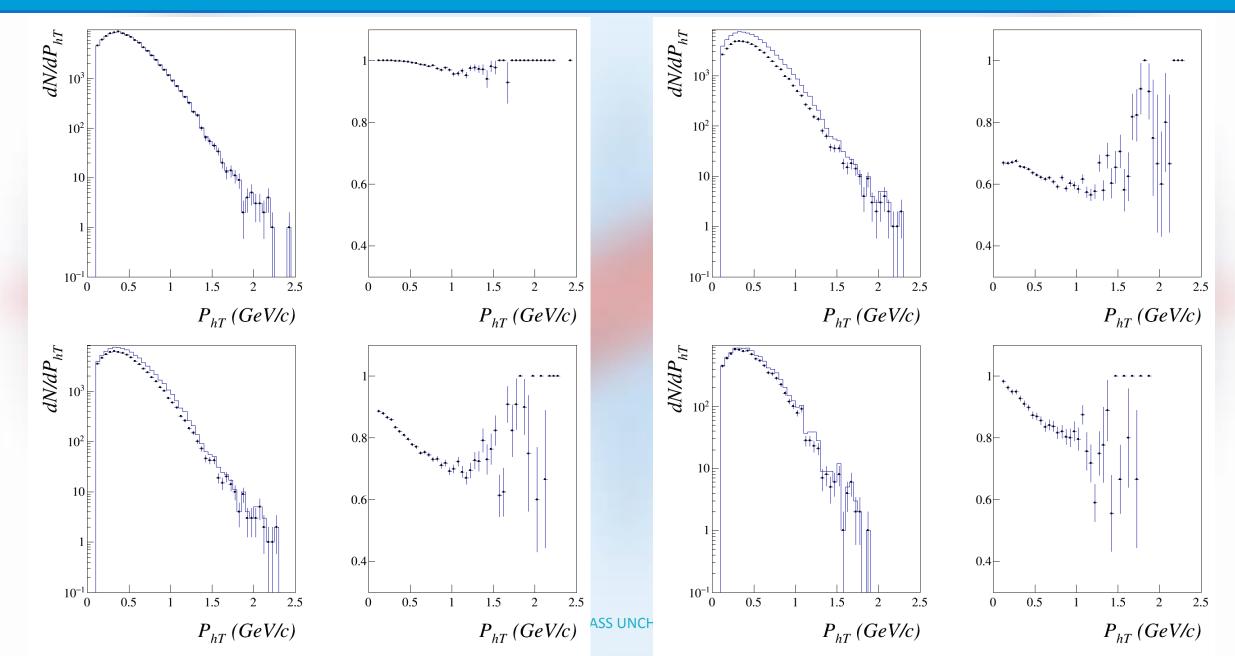

UNPOLARISED PHYSICS ON PROTONS/DETERON


- We are again in the multi-D ground:
 - We need good statistics also in the corners of our phase space
 - We need acceptance both in ϕ and in P_{hT} in order to minimize corrections
 - We need a precise Monte Carlo (as for DVCS) to limit the systematic uncertainty

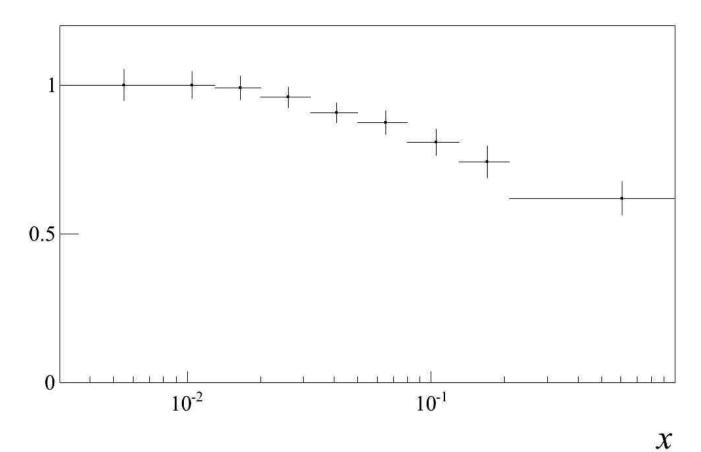
The 2016/17 setup is optimized for DVCS:


- 2.5 m long target, centered at -2m
- EcalO

and we need to check the achievable precision 21/03/2016 COMPASS UNCHAINED



Pure geometrical acceptancs (2016 vs 2010, 0.21 < x < 0.4)


Pure geometrical acceptancs (2016 vs 2010, 0.21 < x < 0.4)

Acceptance transverse binning

All hadrons

COMPASS

Statistical precision in azimuthal asymmetries

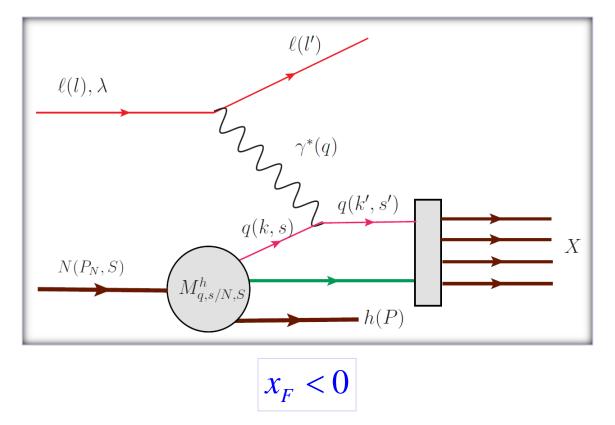
- Keep in mind:
 - For the same muon flux due to the density of the LH_2 the luminosity is reduced by a factor 4 to 5
 - We will take both μ^+ and μ^- and therefore the average luminosity will be reduced further by the lower μ^- flux (factor 2 to 3)
 - Another factor 10 may eventually come from the cut on the target, i.e. by using only the last 25 cm
 - All in all the statistics may be reduced by 100 to 150

THE ACHIVABLE PRECISION OF THESE MEASUREMENT IS AT THE MOMENT UNCLEAR...

A PRECISE MEASUREMENT MIGHT STILL BE NEEDED AFTER PHASE II

New measurements?

- Aram proposed to measure
 - SIDIS in the TFR ($x_F < 0$) and
 - 2h back-to-back in C and TFR
 - First look may come from the 2016/17 run with the unpolarised target to check performances
 - An interesting option for beyond having a recoil detector for the polarised target

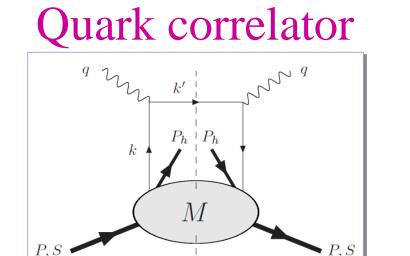

TFR of SIDIS at COMPASS with CAMERA

Aram Kotzinian

INFN, Torino & YerPhI, Armenia

TFR: x_F < 0
#1h SIDIS in TFR
#2h SIDIS B2b SIDIS h₁ in CFR, h₂ in TFR.

SIDIS: TFR

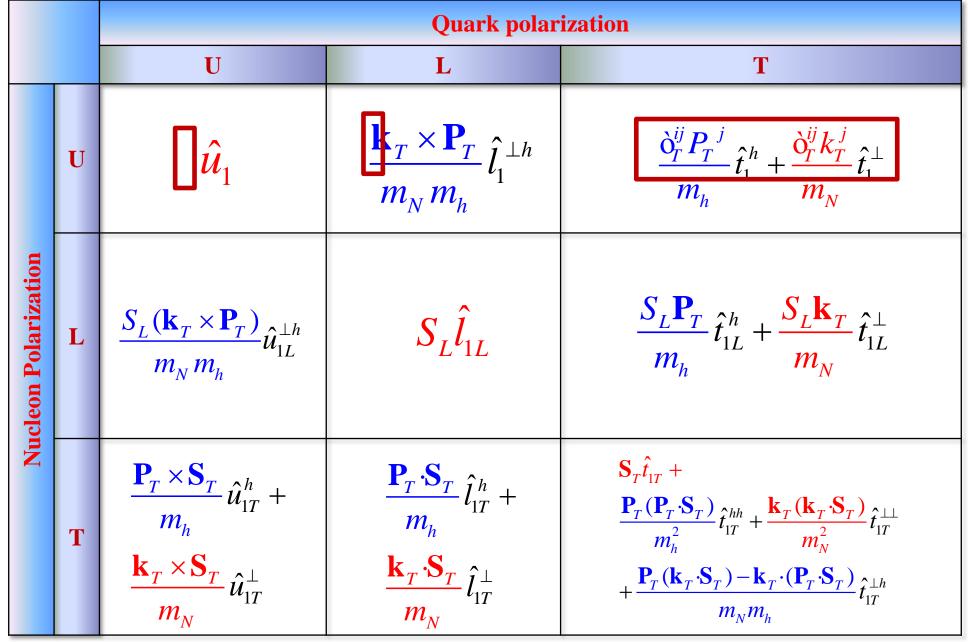


M.Anselmino, V.Barone and A.K., arXiv:1102.4214; PL B699 (2011) 108

$$\frac{d\sigma^{\ell(l,\lambda)+N(P_N,S)\to\ell(l')+h(P)+X}}{dxdQ^2d\phi_Sd\zeta d^2P_T} = M_{q,S/N,S}^h \otimes \frac{d\sigma^{\ell(l,\lambda)+q(k,S)\to\ell(l')+q(k',S')}}{dQ^2}$$

$$\zeta = \frac{P^-}{P_N^-} \approx x_F(1-x)$$
CERN, 18-Nov-15 Aram Kotzinian

39


$$M^{[\Gamma]}(x_{B},\vec{k}_{\perp},\zeta,\vec{P}_{h\perp}) = \frac{1}{4\zeta} \int \frac{d\xi^{+}d^{2}\xi_{\perp}}{(2\pi)^{6}} e^{i(x_{B}P^{-}\xi^{+}-\vec{k}_{\perp}\cdot\vec{\xi}_{\perp})} \sum_{X} \int \frac{d^{3}P_{X}}{(2\pi)^{3}2E_{X}} \times \langle P,S | \overline{\psi}(0)\Gamma | P_{h}, S_{h}; X \rangle \langle P_{h}, S_{h}; X | \psi(\xi^{+},0,\vec{\xi}_{\perp}) | P,S \rangle$$
$$\Gamma = \gamma^{-}, \quad \gamma^{-}\gamma_{5}, \quad i\sigma^{i-}\gamma_{5}$$

At LO 16 STMD fracture functions. Probabilistic interpretation at LO: Conditional probability of finding a quark $q(x,k_{\perp})$ in the fast moving proton fragmenting to $h(\zeta,P_{h\perp})$ moving in same direction \Rightarrow STMD CPDFs

CERN, 18-Nov-15

Aram Kotzinian

STMD Fracture Functions for spinless hadron production

CERN, 18-Nov-15

Aram Kotzinian

Summary

• New measurements for SIDIS in TFR are proposed

• 1h SIDIS in TFR

- ***** Single beam spin sin(Φ) asymmetry
- **\oplus** Unpolarized cross section and $\cos(\Phi)$ and $\cos(2\Phi)$ asymmetries
 - * According to mLEPTO the contribution of Cahn effect have to be very large in $\cos(\Phi)$ modulation
 - ***** Twist 2 STMD Fracture Functions formalism predicts zero $cos(2\Phi)$ modulations

• b2b in 2h SIDIS

- Single beam spin asymmetry
 - * Twist 2 STMD Fracture Functions formalism predicts $sin(\Delta \Phi) + sin(2\Delta \Phi) + \cdots$ modulations
 - Preliminary results from JLAB show up large asymmetries
- In my opinion the physics case is interesting
 - Full MC studies are needed
- It is worth to look if CAMERA can help to observe Λ production and polarization measurement in the TFR

Aram Kotzinian

SUMMARY

- We do have the strong case of transverse deuteron data. One year of data will strongly impact our knowledge of h₁^d!
- Precision on the multi-D phase space is next phase of TMD studies. For this we need luminosity.
- Precise P_{hT} dependent multiplicities and unpolarised azimuthal multiplicities are a must for the understanding of TMDs. These data are foreseen from this and next year...but?
- New structure function may be address in the future, having access to the TFR. First hints on COMPASS performances already from this and next year run