Possible Future Hadron-Spectroscopy Measurements at COMPASS

Boris Grube and the hadron-analysis subgroup

Workshop COMPASS Beyond 2020 CERN, 22. Mar 2016

What do we have on tape?

Large spectroscopy data sets

- $190 \,\mathrm{GeV}/c$ beam on *p* target
- DT0 trigger $\implies t' > 0.1 (\text{GeV}/c)^2$ (event selection: in addition $t' < 1.0 (\text{GeV}/c)^2$)
- Negative hadron beam: 97 % π^- , 2 % K^- , 1 % \bar{p}
 - 2008: 50 \cdot 10⁶ $\pi^{-}\pi^{+}\pi^{-}$ events
 - 2009: $40 \cdot 10^6 \pi^- \pi^+ \pi^-$ events
- Positive hadron beam: 75 % *p*, 24 % π^+ , 1 % *K*⁺
 - $> 50 \cdot 10^6$ diffractive $p\pi^+\pi^-$ events
 - $7.5 \cdot 10^6$ centrally produced $\pi^+\pi^-$ events

Smaller spectroscopy data sets

- 190 GeV/c negative hadron beam
- Multiplicity trigger \implies all (low) t'
- Pb target
 - 2009 W43: $11 \cdot 10^6 \pi^- \pi^+ \pi^-$ events (1.8 \cdot 10^6 events with $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- Similar sized data sets for Ni and *p* targets

What do we have on tape?

Large spectroscopy data sets

- $190 \,\mathrm{GeV}/c$ beam on *p* target
- DT0 trigger $\implies t' > 0.1 (\text{GeV}/c)^2$ (event selection: in addition $t' < 1.0 (\text{GeV}/c)^2$)
- Negative hadron beam: 97 % π^- , 2 % K^- , 1 % \bar{p}
 - 2008: 50 \cdot 10⁶ $\pi^{-}\pi^{+}\pi^{-}$ events
 - 2009: $40 \cdot 10^6 \pi^- \pi^+ \pi^-$ events
- Positive hadron beam: 75 % *p*, 24 % π^+ , 1 % *K*⁺
 - $> 50 \cdot 10^6$ diffractive $p\pi^+\pi^-$ events
 - $7.5 \cdot 10^6$ centrally produced $\pi^+\pi^-$ events

Smaller spectroscopy data sets

- 190 GeV/c negative hadron beam
- Multiplicity trigger \implies all (low) t'
- Pb target
 - 2009 W43: 11 · 10⁶ π[−]π⁺π[−] events (1.8 · 10⁶ events with 0.1 < t' < 1.0 (GeV/c)²)
- Similar sized data sets for Ni and *p* targets

Minimum-bias trigger

- Beam definition (SciFi + beam counter)
- Trigger either
 - On recoil proton (DT0)
 - Or on multiplicity of charged final-state particles > 1
- Veto
 - Beam halo
 - Final-state particles outside of spectrometer acceptance
 - Non-interacting beam particles

Tracking

- High-precision beam definition and vertexing using Si-Detectors
- Precision tracking of final-state particles over large range of momenta ⇒ all tracking elements used

Minimum-bias trigger

- Beam definition (SciFi + beam counter)
- Trigger either
 - On recoil proton (DT0)
 - Or on multiplicity of charged final-state particles > 1
- Veto
 - Beam halo
 - Final-state particles outside of spectrometer acceptance
 - Non-interacting beam particles

Tracking

- High-precision beam definition and vertexing using Si-Detectors
- Precision tracking of final-state particles over large range of momenta ⇒ all tracking elements used

Particle identification

- Beam PID via CEDARs
- Final-state PID via RICH
 - Limitation: K^{\pm} identification only for 10

• (Muon system not used)

Calorimetry

ECAL1 + 2 (and 0) essential for reconstruction of neutral particles
(HCALs not used)

Particle identification

- Beam PID via CEDARs
- Final-state PID via RICH
 - Limitation: K^{\pm} identification only for 10

• (Muon system not used)

Calorimetry

- ECAL1 + 2 (and 0) essential for reconstruction of neutral particles
- (HCALs not used)

Kaon Spectroscopy

Current knowledge of the strange-meson spectrum

- PDG lists in total 25 kaon states
- 17 kaon states above $1450 \text{ MeV}/c^2$
 - 12 are omitted from summary tables
 - 8 need confirmation
 - For 2 states *J*^{*P*} is unknown
 - All entries are older than 20 years, most older than 30 years
- Particularly interesting: $K\pi$ *S*-wave ($J^P = 0^+$)
 - $K_0^*(800)$ [or κ], $K_0^*(1430)$, and $K_0^*(1950)$
- Mapping out kaon excitation spectrum and decay modes
 - Helps understanding light-meson spectrum by completing SU(3)_{flavor} multiplets
 - Important input for Dalitz-plot analyses of small data sets in heavy-meson decays

Interesting Future Measurements Kaon Diffraction

- Many interesting final states accessible in *K*⁻ diffraction
 - E.g. $K^{-}\pi^{0}$, $K^{-}\eta$, $K^{-}\eta'$, $K^{-}\pi^{+}\pi^{-}$, $K^{-}\pi^{+}\pi^{-}\pi^{0}$, ...
 - Analog isospin-partner final states with \bar{K}^0_s
- Existing data
 - E.g. COMPASS (2008): 190 GeV/c K⁻ on p 270 000 K⁻π⁺π⁻ events for 0.07 < t' < 0.7 (GeV/c)²
 - Cf. WA03 (ACCMOR) experiment (1980): 63 GeV/*c* K^- on *p* 200 000 $K^-\pi^+\pi^-$ events for 0 < t' < 0.7 (GeV/*c*)²

High physics potential

- Competition mainly from large *B*-decay data samples (LHCb, Belle II)
 - au and charm-meson decays have only limited mass range

Interesting Future Measurements Kaon Diffraction

- Many interesting final states accessible in *K*⁻ diffraction
 - E.g. $K^{-}\pi^{0}$, $K^{-}\eta$, $K^{-}\eta'$, $K^{-}\pi^{+}\pi^{-}$, $K^{-}\pi^{+}\pi^{-}\pi^{0}$, ...
 - Analog isospin-partner final states with \overline{K}^0_s
- Existing data
 - E.g. COMPASS (2008): 190 GeV/c K⁻ on p 270 000 K⁻π⁺π⁻ events for 0.07 < t' < 0.7 (GeV/c)²
 - Cf. WA03 (ACCMOR) experiment (1980): 63 GeV/*c* K^- on *p* 200 000 $K^-\pi^+\pi^-$ events for 0 < t' < 0.7 (GeV/*c*)²

High physics potential

- Competition mainly from large *B*-decay data samples (LHCb, Belle II)
 - τ and charm-meson decays have only limited mass range

Kaon Diffraction

Main limitation

- Currently, kaon PID covers only 10
 - More than 50% of final-state particles outside of acceptance

• Future program requires kaon PID from 10 to 90% of beam momentum

- RICH 2 vs. photon acceptance
- Alternatively, PID coverage could be improved by lowering beam momentum
 - Diffraction process depends only weakly on \sqrt{s}
 - However, lower beam energy would lead to lower photon acceptance

Kaon Diffraction

Main limitation

- Currently, kaon PID covers only 10
 - More than 50% of final-state particles outside of acceptance

• Future program requires kaon PID from 10 to 90% of beam momentum

- RICH 2 vs. photon acceptance
- Alternatively, PID coverage could be improved by lowering beam momentum
 - Diffraction process depends only weakly on \sqrt{s}
 - However, lower beam energy would lead to lower photon acceptance

Beam requirements

- Kaon fraction > 10% required (now: \approx 2%)
- Beam charge is not important
- Divergence should be small enough so that CEDARs can be used efficiently
- Intensity as high as possible
 - $\gtrsim 5 \cdot 10^6 \text{ s}^{-1}$ like in 2008/9
- Pion contamination not very critical
 - If beam intensity is high enough, pions could be used to improve on existing data sets

Pion Diffraction into Final States with Kaons

- Interesting final states
 - E.g. $\pi K \overline{K}$ and $\pi \pi K \overline{K}$
- High physics potential, e.g.
 - $\pi K \overline{K}$: nature of $a_1(1420)$
 - $\pi\pi K\overline{K}$: spin-exotic states
- Also here, main limitation is coverage of kaon PID

In competition with GlueX (with DIRC upgrade) and CLAS12

Further Pion-Diffraction Measurements

Final states with neutral particles

- Interesting final states
 - E.g. spin-exotic waves in $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\pi^0\pi^0$, $\omega\pi^0\pi^-$, ...
- High physics potential
- Material budget is critical (also true for $K^-\pi^0$, $K^-\eta$, $K^-\eta'$, ...)
 - Improved w.r.t. 2008/9 due to light RICH gas pipe
 - Possible conflict with PID requirements for final-state kaons
- In direct competition with VES and GlueX + CLAS12

Study of A dependence of diffractive production

- Comparing Pb and *p* data in range $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$ shows relative enhancement of M = 1 over M = 0 waves
- May help to better understand nature of spin-exotic wave
- Requires multiplicity trigger
 - Also would extend data to low *t*′
- In direct competition with VES

Further Pion-Diffraction Measurements

Final states with neutral particles

- Interesting final states
 - E.g. spin-exotic waves in $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\pi^0\pi^0$, $\omega\pi^0\pi^-$, ...
- High physics potential
- Material budget is critical (also true for $K^-\pi^0$, $K^-\eta$, $K^-\eta'$, ...)
 - Improved w.r.t. 2008/9 due to light RICH gas pipe
 - Possible conflict with PID requirements for final-state kaons
- In direct competition with VES and GlueX + CLAS12

Study of A dependence of diffractive production

- Comparing Pb and *p* data in range $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$ shows relative enhancement of M = 1 over M = 0 waves
- May help to better understand nature of spin-exotic wave
- Requires multiplicity trigger
 - Also would extend data to low *t*′
- In direct competition with VES

Apparatus Requirements

- Improved beam definition
 - High-precision beam-momentum measurement $\Delta p_{\text{beam}} \lesssim 100 \text{ MeV}/c$ (e.g. silicon detectors around BEND6)
 - Reduction of non-exclusive backgrounds
 - Improved beam PID by CEDARs (e.g. MAPMT readout?)
 - Dedicated luminosity measurement
- Improved recoil detection
 - E.g. TPC or HERMES-like (SciFis + silicon) detector
 - Reduction of non-exclusive backgrounds
- High-precision silicon vertex-detector
- Final-state kaon PID from 10 to 90% of beam momentum
- Low(er) material budget for improved photon detection efficiency
- Improved front-end electronics and DAQ
 - Record $> 80\,000$ minimum-bias trigger per second with $\lesssim 10\%$ deadtime

C. Adolph et. al. "Search for exclusive photoproduction of Zc±(3900) at COMPASS" PLB 742 (2015) 330

Associative photoproduction X(3872)

Access to the lower limit for the full width of X(3872)

 $\Gamma_{X(3872)} = \frac{N_{X(3872)}}{N_{\psi(2S)}} \frac{\Gamma_{\psi(2S) \to J/\psi\pi\pi} B R_{\psi(2S) \to J/\psi\pi\pi}}{B R_{X(3872) \to J/\psi\pi\pi}^2}$

Primakoff-like production of Z(3900)

Conclusions

Light-meson spectroscopy

- High-intensity hadron beam with kaon fraction $\gtrsim 10\%$
- Kaon-spectroscopy data sample that supersedes any existing one by at least factor 5
 - COMPASS could rewrite PDG for states above 1.5 GeV/*c*² (like LASS and WA03 did 20+ year ago)
 - Precision study of $K\pi$ *S*-wave
- Pion fraction of beam can be used to improve on existing data sets
 - Clarify nature of $a_1(1420)$ signal

Heavy-meson spectroscopy

- Study of charmonium-like *X*, *Y*, and *Z* states in muoproduction and in Primakoff-like production on nuclear targets
 - Extraction of partial and full decay widths
- Could be performed in parallel to spin-structure measurements
 - Exclusive muoproduction: extended coverage of trigger required
 - Limited mainly by luminosity

Conclusions

Light-meson spectroscopy

- High-intensity hadron beam with kaon fraction $\gtrsim 10\%$
- Kaon-spectroscopy data sample that supersedes any existing one by at least factor 5
 - COMPASS could rewrite PDG for states above 1.5 GeV/*c*² (like LASS and WA03 did 20+ year ago)
 - Precision study of $K\pi$ *S*-wave
- Pion fraction of beam can be used to improve on existing data sets
 - Clarify nature of $a_1(1420)$ signal

Heavy-meson spectroscopy

- Study of charmonium-like *X*, *Y*, and *Z* states in muoproduction and in Primakoff-like production on nuclear targets
 - Extraction of partial and full decay widths
- Could be performed in parallel to spin-structure measurements
 - Exclusive muoproduction: extended coverage of trigger required
 - Limited mainly by luminosity