

Opportunities with polarized beams at RHIC / EIC

Ernst Sichtermann, LBL

- introduction to RHIC and its detectors,
- recent achievements, open questions,
- near-term opportunities, 2017 run
- completion of RHIC and transition to EIC

COMPASS beyond 2020 CERN - March 21, 2016

RHIC - Polarized Proton-Proton Collider

Unique opportunities to study nucleon spin properties and spin in QCD,

at hard (perturbative) scales with good systematic controls, e.g. from the ~100ns succession of beam bunches with alternating beam spin configurations.

RHIC - Polarized Proton-Proton Collider

Unique opportunities to study nucleon spin properties and spin in QCD,

50-60% polarization

RHIC - The Current Main Experiments

STAR "PNA":

- large acceptance and low mass,
- full acceptance and PID for $l\eta l <$ 1, $\Delta \varphi {\sim} 2\pi$,
- complemented with forward E.M. calorimetry
- key strengths for jets and correlations
- ongoing upgrades: near-term FMS-PSD iTPC, EPD, ETOF

FCS+FTS

PHENIX "PNA":

- high resolution and rate capabilities,
- central arms lηl<0.35, $\Delta \phi \sim \pi$ with key strengths for π^0 and η
- forward muon arms 1.2<I η I<2.4
- last run now, prepare transition to sPHENIX

The RHIC Spin Physics Program - Key Questions

• What is the polarization of gluons in the polarized proton?

• What is the polarization of the light quarks and anti-quarks?

 Does the Sivers' function change sign in proton-collisions compared to DIS?

• What are the quark transversity distributions?

• What is the origin of large forward A_N ?

The RHIC-Spin Program - Selected results, open questions

Gluon Polarization

Gluon Polarization at RHIC - Asymmetry ALL

Measurement: $A_{LL} = \frac{\sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\uparrow}}$

$$\frac{-\sigma^{\uparrow\downarrow}}{+\sigma^{\uparrow\downarrow}} \stackrel{?}{=} \sum_{f=q,g} \frac{\Delta f_1}{f_1} \otimes \frac{\Delta f_2}{f_2} \otimes \hat{a}_{LL} \otimes \text{(fragmentation functions)}$$

- Detect and reconstruct particle, jet,
- Extract beam-spin dependent yields,
- Measure relative luminosity, beam polarization
- Evaluate double beam-helicity asymmetry

Advantages:

- High yields of neutral pions, jets at RHIC,
- Relatively straightforward triggering,
- Relatively simple reconstruction,
- Sizable partonic asymmetries

Disadvantages:

- Contributions from several sub-processes,
- Wide x_g range sampled for each fixed p_T

$$\cdot x_g, x_q \sim p_T/\sqrt{s \cdot \exp(-\eta)}$$

Gluon Polarization at RHIC - Asymmetry ALL

Measurement: $A_{LL} = \frac{\sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\uparrow}}$

$$\frac{-\sigma^{\uparrow\downarrow}}{+\sigma^{\uparrow\downarrow}} \stackrel{?}{=} \sum_{f=q,g} \frac{\Delta f_1}{f_1} \otimes \frac{\Delta f_2}{f_2} \otimes \hat{a}_{LL} \otimes \text{(fragmentation functions)}$$

- Detect and reconstruct particle, jet,
- Extract beam-spin dependent yields,
- Measure relative luminosity, beam polarization
- Evaluate double beam-helicity asymmetry

Advantages:

- High yields of neutral pions, jets at RHIC,
- Relatively straightforward triggering,
- Relatively simple reconstruction,
- Sizable partonic asymmetries

Disadvantages:

- Contributions from several sub-processes,
- Wide x_g range sampled for each fixed p_T

$$x_g, x_q \sim p_T/\sqrt{s exp(-\eta)}$$

Gluon Polarization at RHIC - Asymmetry ALL

Measurement:

$$A_{LL} = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\uparrow\downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\downarrow}} \stackrel{?}{=} \sum_{f=q,q} \frac{\Delta f_1}{f_1} \otimes \frac{\Delta f_2}{f_2} \otimes \hat{a}_{LL} \otimes \text{(fragmentation functions)}$$

- Detect and reconstruct particle, jet,
- Extract beam-spin dependent yields,
- Measure relative luminosity, beam polarization
- Evaluate double beam-helicity asymmetry

Advantages:

- High yields of neutral pions, jets at RHIC,
- Relatively straightforward triggering,
- Relatively simple reconstruction,
- Sizable partonic asymmetries

Disadvantages:

- Contributions from several sub-processes,
- Wide x_g range sampled for each fixed p_T

$$x_g, x_q \sim p_T/\sqrt{s \cdot \exp(-\eta)}$$

Gluon Polarization - Precision ALL from STAR

Significant advance: about an order in precision, two to three times the kinematic range, compared to initial RHIC data,

initial sensitivity to different x_g from rapidity dependence,

 A_{LL} is positive for large p_T , indicative of *positive gluon polarization*.

Gluon Polarization - RHIC Impact

Both the DSSV and the NNPDF groups use RHIC data in their latest PDF fits,

RHIC data, in particular on jets, currently drive the constraints on ΔG in both fits,

DSSV: 0.19^{+0.06} NNPDF: 0.23 ± 0.07

at 90% C.L. for x > 0.05 for 0.05 < x < 0.5

i.e. evidence for *positive gluon polarization in this kinematic range and at* 10 GeV².

Gluon Polarization - Status and what is next?

Further *precision* from jet and neutral pion probes, and from *complementary* probes

Gluon Polarization - What to expect next?

- additional constraints from correlated probes, e.g. di-jets, but not adtl. kin. coverage,
- longer term opportunity (2020+): EIC, or (and?)

renewed $\sqrt{s} = 500$ GeV operations with forward upgrade

The RHIC-Spin Program - Selected results, open questions

Quark Polarization

Quark Polarization at RHIC

 $\sqrt{s} = 500 \text{ GeV}$ above W production threshold,

Experiment Signature: large pT lepton, missing ET

Experiment Challenges: charge-ID at large Irapidityl electron/hadron discrimination luminosity hungry!

$$\Delta \sigma^{\text{Born}}(\vec{p}p \to W^+ \to e^+\nu_e) \propto -\Delta u(x_a)\bar{d}(x_b)(1+\cos\theta)^2 + \Delta \bar{d}(x_a)u(x_b)(1-\cos\theta)^2$$

Spin Measurements:

$$A_L(W^+) = \frac{-\Delta u(x_a)\bar{d}(x_b) + \Delta \bar{d}(x_a)u(x_b)}{u(x_a)\bar{d}(x_b) + \bar{d}(x_a)u(x_b)} = \begin{cases} -\frac{\Delta u(x_a)}{u(x_a)}, & x_a \to 1\\ \frac{\Delta \bar{d}(x_a)}{\bar{d}(x_a)}, & x_b \to 1 \end{cases}$$

Initial mid-rapidity data in 2009,

Analysis tour-de-force for both experiments!

$$A_L(W^-) = \begin{cases} -\frac{\Delta d(x_a)}{d(x_a)}, & x_a \to 1\\ \frac{\Delta \bar{u}(x_a)}{\bar{u}(x_a)}, & x_b \to 1 \end{cases}$$

Quark Polarization at RHIC - Cross Sections

PHENIX: first *W*⁺ and *W*⁻ production cross sections in proton-proton collisions, Phys.Rev.Lett. **106** (2011) 062001,

STAR: Initial NC cross section at RHIC, confirmation of PHENIX CC cross section measurements, Phys. Rev. **D85** (2012).

Data are well-described by NLO pQCD theory (FEWZ + MSTW08),

Support NLO pQCD interpretation of the asymmetry measurements,

Aside, future ratio measurements may provide insights in unpolarized light quark distributions

Quark Polarization - *More Precise* A_L from RHIC

Quark Polarization - Next Steps

Quark Polarization - Next Steps

The RHIC-Spin Program - Selected results, open questions

Transverse Spin Phenomena: Sivers

STAR W A_N - "The sign change"

Calls for continued measurement; PAC approved, LRP supported, planned for 2017, Eagerly anticipate forward photon A_N from run-15; A_NDY has published forward jet A_N, Drell-Yan: initial measurement at RHIC in 2017 via the electron decay channel, using a post-shower (and UV) upgrade to the STAR forward EM Cal. (FMS), future measurements, in p+A, are drivers in forward upgrade LOI's.

STAR W A_N - Prospects for 2017 Run

Lots of work ahead to turn these projections into actual results,

Ample other opportunities, for example photons, Drell Yan, diffraction, mid-rapidity, gradual upgrades to existing STAR forward instrumentation, RHICf@STAR,

STAR photon A_N - Prospects with 2017 Run

Measurement relies crucially on the now existing pre-shower to the FMS,

Sensitive to the "sign-change" in the twist-3 formalism,

light valence quarks, at relatively high-*x*,

twist-3 evolution, not TMD evolution.

Constraining this evolution is one of the motivations for running in 2020+

STAR Drell-Yan - Prospects for 2017 Run

No TMD evolution

With TMD evolution

The RHIC-Spin Program - Selected results, open questions

Transverse Spin Phenomena: Collins

Quark Transversity at RHIC

 \overline{S}_B \overrightarrow{P}_B 100 GeV \overrightarrow{P}_{h1} $2\overrightarrow{R_c}$ \overrightarrow{P}_{A} 100 GeV \overrightarrow{P}_{C} \overline{P}_{h2}

2. di-hadron correlation measurements couple transversity with interference-fragmentation.

Both methods have been pursued and have delivered initial results...

STAR AUT - Quark Transversity and Fragmentation

azimuthal modulation within the jet

interference fragmentation

Sensitivity to quark transversity and *polarized* fragmentation,

200 and 500 GeV results are similar; is TMD evolution in FF small?

Non-zero observations open a path to nuclear modification of polarized fragmentation, first analyses in progress,

Particle-identification key to further surprises? Theoretical/phenomenological input sought.

STAR AUT - Quark Transversity and Fragmentation

interference fragmentation

Sensitivity to quark transversity and *polarized* fragmentation,

200 and 500 GeV results are similar; is TMD evolution in FF small?

Non-zero observations open a path to nuclear modification of polarized fragmentation, first analyses in progress,

Particle-identification key to further surprises? Theoretical/phenomenological input sought.

The RHIC-Spin Program - Selected results, open questions

Transverse Spin Phenomena: large A_N

STAR neutral pion A_N - a continuing puzzle since E704

What causes this?

An experimental handle beyond collinear twist-2 perturbative QCD?

STAR neutral pion A_N - a continuing puzzle since E704

The puzzle continues...

and points to a need for qualitatively new instrumentation and measurements, Low-multiplicity observation, consistent with a diffractive production mechanism, STAR Roman Pots (now) directly measure diffractive $A_{N.}$ Initial analyses in progress. 26

Completion of RHIC and transition to EIC

Completion of RHIC and transition to EIC

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

RECOMMENDATION I

The progress achieved under the guidance of the 2007 Long Range Plan has reinforced U.S. world leadership in nuclear science. The highest priority in this 2015 Plan is to capitalize on the investments made.

RECOMMENDATION II

We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

RECOMMENDATION III

We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB. [Q3 FY22]

RECOMMENDATION IV

We recommend increasing investment in small-scale and mid-scale projects and initiatives that enable forefront research at universities and laboratories.

BNL-ALD Berndt Mueller to STAR - January 2016

Proposed run schedule for RHIC

Years	Beam Species and Energies	Science Goals	New Systems Commissioned
2016	High statistics Au+Au d+Au energy scan	Complete heavy flavor program First measurement of Λ_c Collectivity in small systems	Coherent e-cooling test I
2017	High statistics Pol. p+p at 510 GeV	Transverse spin physics	Coherent e-cooling test II
2018	No Run		Low energy e-cooling upgrade
2019-20	7.7-20 GeV Au+Au (BES-2)	Search for QCD critical point and onset of deconfinement	STAR iTPC upgrade EPD upgrade
2021	No Run		sPHENIX installation
2022-23	200 GeV Au+Au with upgraded detectors Pol. p+p, p+Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia	sPHENIX
2024	No Runs		Transition to eRHIC

Completion of RHIC and transition to EIC

Requested by DOE Office of Science Nuclear Physics in Summer 2015,

Approach:

- emphasize measurements that can *only* be done at a polarized proton collider,
- relate to EIC,
- emphasize flexibility of RHIC for new explorations, e.g. polarized nuclear FF,
- propose only *modest* upgrades,

Universality, factorization focused.

RHIC Cold QCD Plan in One Slide

	Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W [±] , Z ⁰ , DY	A _N ^{DY} : Postshower to FMS@STAR
				Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s - 2\phi_h)} A_{UT}^{\sin(\phi_s - \phi_h)}$ modula- tions of h^{\pm} in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None
				First look at GPD Eg	A_{UT} for J/ Ψ in UPC	None
Sche	2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
eduled RI				evolution of ETQS fct. properties and nature of the diffractive exchange in p+p collisions.	A_N for γ A_N for diffractive events	None None
HC ru	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	$R_{pAu}(DY)$:Yes Forward instrum.
aning				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.
	2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAl} : direct photons and DY	$R_{pAl}(DY)$: Yes
			o weeks	A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
				A-dependence for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.
Pot	202X	p [†] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$	Yes Forward instrum.
ential futu running				quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	and mid-rapidity observables as in 2017 run	None
ure	202X	$\overrightarrow{p} \overrightarrow{p} @ 510$	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets at $\eta > 1$	Yes Forward instrum.

Table 1-2: Summary of the Cold QCD physics program propsed in the years 2017 and 2023 and if an additional 500 GeV run would become possible.

RHIC Cold QCD Plan - p+p highlights

Pursue possible Twist-3 origin of forward A_N with improved photon A_N measurements, and charged-pion enhanced jets.

RHIC Cold QCD Plan - p+p highlights, $\sqrt{s} = 500$ GeV

Large-*x* Collins asymmetries.

RHIC Cold QCD Plan - STAR Forward Detector Upgrade

Ensure jet capability ($\sqrt{s} = 500 \text{ GeV}$), charge-sign discrimination, Drell-Yan, "modest" cost

was: W-powder EM-cal

now: re-use PHENIX eCAL

new HCAL, based on STAR-EIC R&D

4-6 Si-strip disks, or pixels

8-10 GEM layers have been considered as well

Forward upgrade to sPHENIX is conceptually similar; only one will be realized (imho).

EIC

Overall Editors: A. Deshpande (Stony Brook), Z-E. Meziani (Temple), J. Qiu (BNL)

> *Gluon Saturation in e+A:* T. Ullrich (BNL) and Y. Kovchegov (Ohio State)

Nucleon spin structure (inclusive e+N): E. Sichtermann (LBNL) and W. Vogelsang (Tübingen)

> GPD's and exclusive reactions: M. Diehl (DESY) and F. Sabatie (Saclay)

TMD's and hadronization and SIDIS: H. Gao (Duke) and F. Yuan (LBNL)

Parton Propagation in Nuclear Medium: W. Brooks (TSFM) and J. Qiu(BNL)

Electroweak physics: K. Kumar (U Mass) and M. Ramsey-Musolf (Wisconsin)

Accelerator design and challenges: A. Hutton (JLab) and T. Roser (BNL)

Detector design and challenges: E. Aschenauer (BNL) and T. Horn (CUA)

Senior Advisors: A. Mueller (Columbia) and R. Holt (ANL)

Successful thanks to many other co-authors and contributions

coherent contributions from many nucleons ence programs in the U.S. established at both effectively amplify the gluon density being the CEBAF accelerator at JLab and RHIC at

The EIC was designated in the 2007 Nu- tant ways. The most intellectually pressing

BNL in dramatic and fundamentally impor-

2

all past, current, and contemplated facili- light-ion beams; b) a wide variety of heavyties around the world by being at the inten- ion beams; c) two to three orders of magsity frontier with a versatile range of kine- nitude increase in luminosity to facilitate tomatics and beam polarizations, as well as mographic imaging; and d) wide energy varibeam species, allowing the above questions ability to enhance the sensitivity to gluon to be tackled at one facility. In particu- distributions. Achieving these challenging lar, the EIC design exceeds the capabilities technical improvements in a single facility of HERA, the only electron-proton collider will extend U.S. leadership in accelerator sci-

ArXiv:1212.1701

effectively amplify the gluon density being the CEBAF accelerator at JLab and RHIC at

coherent contributions from many nucleons ence programs in the U.S. established at both BNL in dramatic and fundamentally impor-

The EIC was designated in the 2007 Nu- tant ways. The most intellectually pressing

2

all past, current, and contemplated facili- light-ion beams; b) a wide variety of heavyties around the world by being at the inten- ion beams; c) two to three orders of magsity frontier with a versatile range of kine- nitude increase in luminosity to facilitate tomatics and beam polarizations, as well as mographic imaging; and d) wide energy varibeam species, allowing the above questions ability to enhance the sensitivity to gluon to be tackled at one facility. In particu- distributions. Achieving these challenging lar, the EIC design exceeds the capabilities technical improvements in a single facility of HERA, the only electron-proton collider will extend U.S. leadership in accelerator sci-

ArXiv:1212.1701

No competition, really.

No competition, really.

U.S.-based Electron Ion Collider - Reality Check

What Aspect Are We Working On Now?

We continue to work on whether the number of future electron ion colliders will be 1 or 0.

Two slides from Dr. Tim Hallman, Associate Director for Nuclear Physics at the DOE Office of Science, at the recent EIC User Group meeting at Berkeley.

(The first possibility is of course highly anticipated based on QCD science and future mission need for the field)

Outlook

	Office of Science
--	----------------------

EIC Meeting

This was the most upbeat talk on EIC I have seen from this office in the past 10 years or so. Our work continues...

Independent Vetting of Science Case

R&D & Design Refinement to Reduce Risk and \$\$

Decision on when to go for CDO, Mission Need

Mechanism for determining "Best Value" to the United States

Ja

20

Closing Comments

U.S. EIC is *not* a done deal, but the prospects are better than ever;

- positive recommendation in the 2015 Long Range Plan for U.S. Nuclear Physics,
- independent science review by the National Academy of Sciences is starting,
- discussion is moving from "science case" to "next steps":
 - reduce (uncertainty in) cost estimate,
 - establish "mission need",
 - site selection,

"An EIC is envisioned to start construction after FRIB construction is completed and to be operational by the end of the 2020s." (2015 Long Range Plan, resource section).

RHIC spin:

- 2017 run is (now) firmly rooted in the BNL facility plan,
- next opportunity will be concurrent with *high-luminosity* √s = 200 GeV p+p and p+A heavy-ion reference data taking in 2023; case articulated for both
- "modest" instrument upgrades thinkable; most likely forward calorimetry and tracking, limited or no particle-identification,
- strong case for renewed \sqrt{s} = 500 GeV, but not currently part of the facility plan.