COMPASS beyond 2020 Workshop March 21-22, 2016

Progress and opportunities of unpolarised Drell-Yan program

Wen-Chen Chang Institute of Physics, Academia Sinica, Taiwan

Outline

• **Progress made by Drell-Yan experiments in the past 20 years:**

- FNAL E866
- FNAL E906 (SeaQuest)
- CERN COMPASS
- **Opportunities for Drell-Yan processes with pion/kaon/antiproton beams:**
	- Nucleon $x(s + \bar{s})$
	- Pion/kaon PDFs
	- Origin of Lam-Tung violation
	- Flavor dependence of nucleon Boer-Mulders functions
	- Pion/kaon/antiproton distribution amplitude
	- Flavor-dependent EMC effect
	- $\ddot{}$.
- **Feasibility for COMPASS (beyond 2020)**
- **Conclusions**

Progress of Drell-Yan Experiments in the past

Deep Inelastic Scattering (DIS) and Drell-Yan Processes

Parton Distribution Function (PDF) of Proton: MMHT 2014 PDFs

L. A. Harland-Lang, A. D. Martin, P. Motylinski, R.S. Thorne, arXiv:1412.3989

Light Antiquark Flavor Asymmetry: Drell-Yan Experiments

- Naïve Assumption: $\bar{d}(x) = \bar{u}(x)$
- NMC (Gottfried Sum Rule): $\left[\bar{d}(x)-\bar{u}(x)\right]dx \neq 0$
- NA51 (Drell-Yan, 1994):

 $d > \bar{u}$ at $x = 0.18$

• E866/NuSea (Drell-Yan, 1998):

 $d(x)/\bar{u}(x)$ for $0.015 \leq x \leq 0.35$

Constraint of $x(d - \bar{u})$ in Global Analysis

E. Pereza and E. Rizvib, arXiv:1208.1178

Preliminary Results of $d/\bar{u}(x)$ from E906 (SeaQuest)

Dimuon Invariant-mass Distributions (2014 COMPASS DY)

Dimuon x_1, x_2 and p_T Distributions (2014 COMPASS DY)

10

Projections: COMPASS polarized DY

• 2015: ~80 000 DY events M>4 GeV/c² from NH3 target

• 2018: ~116 000 events (assuming same conditions, but 160 effective days)

Sivers asymmetry statistical error:~1.8%

Catarina Marques Quintans

Large Uncertainty of $x(s + \overline{s})$ at valence-quark region

arXiv:1412.3989

Charged Kaon SIDIS *HERMES Collaboration, PRD 89, 097101 (2014)*

$x(s+s)$ from SIDIS of kaons *HERMES Collaboration, PRD 89, 097101 (2014)*

With the input of D_{Q}^{K} and D_{S}^{K} and non-strange quark distributions Q(x), S(x) is extracted.

Large Uncertainty in the extraction of $x(s + s)$ *W.C. Chang and J.C. Peng, PRD 92, 054020 (2015)*

Unfortunately D_{Q}^{K} and D_{S}^{K} are not well determined... $\boxed{16}$

Kaon Partonic Structure *NA3 Collaboration, PLB 93, 354 (1980)*

17

Valence-quark distribution functions in the kaon and pion *Chen, et al., arXiv:1602.01502*

Algebraic formulae for the dressed-quark propagators and pion and kaon Bethe-Salpeter amplitudes where SU(3) symmetry breaking is implemented.

Valence-quark distribution functions in the kaon and pion *Chen, et al., arXiv:1602.01502*

X

JLab 12 $\left[\underline{8}, \underline{9} \right]$. Furthermore, new mesonic Drell-Yan measurements at modern facilities could yield valuable information on π and K PDFs [10, [11], as could two-jet experiments at the large hadron collider $[12]$; and, looking further ahead, an electron ion collider would be capable of providing access to pion and kaon structure functions through measurements of forward nucleon structure func-19tions $[13, 14]$.

Kaon-induced Drell-Yan Process: *Avoiding Fragmentation Functions Uncertainty*

$$
K^{+}p(x_{f}) = u^{K}(x_{1})\overline{u}^{p}(x_{2}) + \overline{S^{K}(x_{1})S^{p}(x_{2})}
$$

\n
$$
K^{-}p(x_{f}) = \overline{u}^{K}(x_{1})u^{p}(x_{2}) + \overline{S^{K}(x_{1})S^{p}(x_{2})}
$$

\non-induced Drell-Yan cross sections will determine
\nucleon strange quark structure
\n(aon PDFs
\n**Kaon beam and LH₂ target**

Kaon-induced Drell-Yan cross sections will determine

- nucleon strange quark structure
- kaon PDFs

Kaon beam and LH² target

Opportunity (2): Violation of Lam-Tung relation & Boer-Mulders Functions

Drell-Yan decay angular distributions

 θ and ϕ are the decay polar and azimuthal angles of the μ^* in the dilepton rest-frame

Collins-Soper frame

$$
\frac{d\sigma}{d\Omega} \propto (1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{V}{2} \sin^2 \theta \cos 2\phi)
$$

$$
\propto (W_T (1 + \cos^2 \theta) + W_L (1 - \cos^2 \theta) + W_\Delta \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi)
$$

 $q\overline{q}$ annilation parton model:

$$
O(\alpha_s^0)
$$
 $\lambda=1$, $\mu=\nu=0$; $W_T = 1$, $W_L = 0$

Lam-Tung relation (1978): test of QCD effect

Collinear pQCD: $O(\alpha_s^1)$, $W_L = 2W_{\Delta\Delta}$; $1 - \lambda - 2\nu = 0$

NA10 @ CERN: Violation of Lam-Tung Relation *Z. Phys. 37 (1988) 545*

 π ⁻+W 140 GeV π

 π ⁻⁺W 194 GeV

 π ⁻⁺W 286 GeV

E615 @ FNAL: Violation of Lam-Tung Relation *PRD 39, 92 (1989)* $252 - GeV \pi + W$

24

Azimuthal Asymmetries Require Nontrivial Spin Correlation

The most general $q\bar{q}$ spin density matrix

 $(q,\bar q) = \frac{1}{11} \text{ or } 1 + E$ $\{1 \otimes 1 + \overline{F}_i(\vec{\sigma} \bullet \vec{e}_i) \otimes 1 + \overline{G}_i 1 \otimes (\vec{\sigma} \bullet \vec{e}_i) + \overline{H}_{ii}(\vec{\sigma} \bullet \vec{e}_i) \otimes (\vec{\sigma} \bullet \vec{e}_i)\}$ $4¹$ $\rho^{(q,q)} = \frac{1}{4} \{ 1 \otimes 1 + F_j(\vec{\sigma} \cdot \vec{e}_j) \otimes 1 + G_j 1 \otimes (\vec{\sigma} \cdot \vec{e}_j) + H_{ij}(\vec{\sigma} \cdot \vec{e}_i) \otimes (\vec{\sigma} \cdot \vec{e}_j) \}$ 22 \sim 11 \ Violation of LT relation: $\kappa = -\frac{1}{4}(1 - \lambda - 2\nu) \approx \left\langle \frac{H_{22} - H_{11}}{1 + H_{33}} \right\rangle$ H_{∞} / $\kappa = -\frac{1}{2}(1 - \lambda - 2\nu) \approx \left(\frac{H_{22} - H_{11}}{2}\right)$ $+$ H₂₂ /

Collinear case:
$$
H_{11} = H_{22}
$$
, $H_{23} = H_{32} = 0$, $\kappa = 0$

Brandenburg, Nachtmann & Mirkes, ZPC 60 (1993) 697

Nonzero *K* requires *the correlation of the spins of quark and antiquark.*

What will be the mechanism?

Brandenburg, Nachtmann & Mirkes [Z. Phy. C 60 (1993) 697]: QCD Vacuum Effect

Boer [PRD 60, 014012 (1999)]: Hadronic Effect, Boer-Mulders Functions

Spin-orbit correlation of transversely polarized *noncollinear partons* inside an unpolarized hadron

- Boer-Mulders Function h_1^{\perp} : a correlation between quark's k_T and transverse spin S_T in an unpolarized hadron
- h_1^{\perp} can lead to an azimuthal dependence with $-\infty h_1^{\perp}(N)h_1^{\perp}(\pi)$ 2 and \sim 2 • h_1^{\perp} can lead to an azimuthal dependence with $\frac{V}{\sim} \propto h_1^{\perp}(N) \overline{h_1}^{\perp}(\pi)$

$$
h_1^{\perp}(x, k_T^2) = C_H \frac{\alpha_T}{\pi} \frac{M_C M_H}{k_T^2 + M_C^2} e^{-\alpha_T k_T^2} f_1(x),
$$

$$
\nu = 16\kappa_1 \frac{p_T^2 M_C^2}{(p_T^2 + 4M_C^2)^2}, \quad \kappa_1 = C_{H_1} C_{H_2} / 2
$$

$$
\kappa = \frac{V}{2} \rightarrow 0 \text{ for large } |k_T|
$$

Consistency of factorizati on in term of TMD s

27

Chen & Li [PLB 726 (2013) 262] Breaking of Factorization by Glauber Gluons

Theoretical Interpretations of Lam-Tung Violation in pion-induced DY

Measurements with different beams π , p , K , \overline{p} over wide kinematical ranges

would help differentiating the origin of Lam-Tung violation.

Kaon and antiproton beams

Consistency of LT relation in p+p and p+d DY: *E866 (PRL 99 (2007) 082301; PRL 102 (2009) 182001)*

Boer-Mulders functions from unpolarized pD and pp Drell-Yan data $\sigma_{UU} \propto f_{1}^{(A,\bar{q})} f_{1}^{(\text{B,q})} + h_{1}^{\perp(A,\bar{q})} h_{1}^{\perp(\text{B,q})} \cos 2 \phi$

Sign of BM functions and flavor dependence?

Lu, Ma & Schimdt [PLB 639 (2006) 494]: Flavor separation of the Boer–Mulders functions

Opportunity (3): Distribution amplitudes

CIP (PRL 43, 1219, (1979)) : Longitudinally Polarized Photon at large x_1

 $[W_T(1+\cos^2\theta)+W_L(1-\cos^2\theta)+W_{\Delta}\sin 2\theta\cos\phi+W_{\Delta\Delta}\sin^2\theta\cos 2\phi]$ $d\sigma$ $d\Omega$ $\frac{\partial}{\partial \Omega} \propto [W_T (1 + \cos^2 \theta) + W_L (1 - \cos^2 \theta) + W_{\Delta} \sin 2\theta \cos \phi + W_{\Delta \Delta} \sin^2 \theta \cos 2\phi]$

34

CIP (PRL 58, 2523 (1987)) : $\pi W \rightarrow J/\psi X$

Sign of $q\bar{q}$ annihilation dominating?

 $d^2\sigma/d\cos\theta d\phi \propto 1 + \lambda \cos^2\theta + \mu \sin 2\theta \cos\phi$

FIG. 4. The J/ψ decay angular distribution vs $\cos\theta$ for the five regions of ϕ , and summed over all ϕ in the highest x_F bin, $0.95 \le x_F \le 1.0$. The histograms are the result of the fit described in the text. (a) $-\pi < \phi < -0.6\pi$, (b) $-0.6\pi < \phi$ $<-0.2\pi$, (c) $-0.2\pi < \phi < 0.2\pi$, (d) $0.2\pi < \phi < 0.6\pi$, (e) 0.6π $\langle \phi \rangle \langle \pi, (f) - \pi \langle \phi \rangle \langle \pi,$

 $+\frac{1}{2}v\sin^2\theta\cos 2\phi$.

Brandenburg et al. (PRL 73, 939 (1994)) Higher-twist Effect & Pion Distribution Amplitude

$$
\frac{Q^2 d\sigma (\pi^- N \to \mu^+ \mu^- X)}{dQ^2 dQ_T^2 dx_L d\Omega} = \frac{1}{(2\pi)^4} \frac{1}{64} \int_0^1 dx_u G_{u/N}(x_u) \int_0^1 dx_{\bar{u}} \frac{x_{\bar{u}}}{1 - x_{\bar{u}} + Q_T^2/Q^2} |M|^2
$$

$$
\times \delta(x_L - x_{\bar{u}} + x_u - Q_T^2 s^{-1} (1 - x_{\bar{u}})^{-1})
$$

$$
M = \int_0^1 dz \phi(z, \tilde{Q}^2) T, \qquad \times \delta(Q^2 - s x_u x_{\bar{u}} + Q_T^2 (1 - x_{\bar{u}})^{-1}) + \{u \to \bar{d}, \bar{u} \to d\}.
$$

Pion distribution amplitude: distribution of LC momentum fractions in the lowest-particle number valence Fock state. 36

Brandenburg et al. (PRL 73, 939 (1994)) Pion Distribution Amplitude

Brandenburg et al. (PRL 73, 939 (1994)): Pion/Kaon/Antiproton Distribution Amplitude

The coefficient functions λ , μ , and ν are large $x > 0.5$ are very sensitive to the shape of the projectile's distribution amplitude $\phi(z, \tilde{Q}^2)$, the basic hadron wave function which describes the distribution of light-cone momentum fractions in the lowest-particle number valence Fock state. Measurements of meson form factors [12] and other exclusive and semiexclusive processes [16] at large momentum transfer can only provide global constraints on the shape of $\phi(z, \tilde{Q}^2)$; in contrast, the angular dependence of the lepton pair distributions can be used to provide local measurements of the shapes of these hadron wave functions. Detailed measurements of the angular distribution of leptons as a function of both x and Q_T for the reactions $Hp \rightarrow l + l^{-}X$ for the whole range of fixed target beams $H = \pi$, K, \bar{p} , p, and n will open up a new window on the structure of hadrons at the amplitude level.

Kaon and antiproton beams $\overline{}$ 38

$\pi N \to \gamma^* N$ (Exclusive Drell-Yan)

E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

$$
\tau = \frac{Q^2}{2pq} \approx \frac{Q^2}{s - M_N^2} \qquad \eta = \frac{(p - p')^+}{(p + p')^+}
$$

$$
\frac{d\sigma}{dQ'^2 dt d(\cos\theta) d\varphi}
$$

$$
= \frac{\alpha_{\text{em}}}{256\pi^3} \frac{\tau^2}{Q'^6} \sum_{\lambda',\lambda} |M^{0\lambda',\lambda}|^2 \sin^2\theta,
$$

$$
\begin{aligned}\n\frac{d u}{d\kappa}(\xi, \eta, t) \\
&= \frac{8}{3} \alpha_S \int_{-1}^{1} dz \, \frac{\phi_\pi(z)}{1 - z^2} \\
&\times \int_{-1}^{1} dx \left[\frac{e_d}{\xi - x - i\epsilon} - \frac{e_u}{\xi + x - i\epsilon} \right] \\
&\times \left[\widetilde{H}^d(x, \eta, t) - \widetilde{H}^u(x, \eta, t) \right], \text{39}\n\end{aligned}
$$

Opportunity (4): Flavor-dependent EMC effect

Cloet et. al (PRL 102, 252301, 2009): Flavor dependence of the EMC effect?

CBT model: the iso-vector ρ^0 mean-field generated in Z≠N

Dutta et al. (PRC 83, 04220, 2011): Pion-induced Drell-Yan and the flavor-dependent EMC effect

42

Dutta et al. (PRC 83, 04220, 2011): Pion-induced Drell-Yan and the flavor-dependent EMC effect

Feasibility for COMPASS (Beyond 2020)

High-intensity pion beam
High-intensity kaon beam
High-intensity antiproton beam

COMPASY

Dimuon Vertex Distributions (2014 DY)

46

Fraction of particles in the positive or negative M2-Hadron-beam at COMPASS target http://www.staff.uni-mainz.de/jasinsk/index.htm

fraction of protons over beammomentum fraction of pi+ over beammomentum fraction of K+ over beammomentum $0.02F$ 11 0.6 0.018 0.9 $+$ K^+ | p 0.5 π 0.014 0.8 0.4 0.012 0.7 0.01 0.3 0.6 0.008 0.006 0.2 0.5 0.004 0.1 0.4 0.002 تتتنبأ المتماز بمنطق بماعتين تتميل بربر المربوط بالنفر بالمروز $\mathbf{0}$ οE 250 100 150 200 250 300 350 100 $\overline{150}$ $\overline{200}$ 300 350 400 150 $\overline{200}$ 250 300 350 400 100 fraction of K- over beammomentum fraction of p bar over beammomentum fraction of pi- over beammomentum 0.985F 0.025 $^{\sim}2.5\%$ 0.024 0.98 **1x108/sec** 0.023 0.02 *p* | $\sqrt{2}$ \mathbb{R} $\mathbb{$ π 0.021 0.015 0.97 0.02 $~97\%$ 0.01 0.019 $~^{\sim}1\%$ 0.965 0.018 0.005 0.017 0.96 0.016 ilini biri biri biri ba Ω 100 150 200 250 300 350 400 100 150 200 250 300 350 400 100 150 200 250 300 350 400

47

Beam PID: CEDAR (Cerenkov Differential Counters with Achromatic Ring Focus)

Takahiro Sawada

Estimation of #DY

49

Attenuation of hadron beams in target materials

Primary [−] **Beam Flux into each target**

Final configuration: 7-cm Al target, 267 mm from the beam plug. Pion interaction length (Aluminum) = 50.64 cm 7.0 cm = 13.8 % of pion interaction length

Al (7cm) + W

Estimation of #DY **Attenuation of beam hadrons in material** Takahiro Sawada

Assumption:

K- : 2.5 % x 0.5 (PID efficiency)

anti-p : 1% x 0.8 (PID efficiency)

[−] **Beam Flux into each target**

\bar{p} Beam Flux into each target

Expected Statistical Precision of Dimuon Angular Distributions

WPAS

4 < *Mμμ*< 9 *GeV/c²*

Expected Statistical Precision of Dimuon Angular Distributions

 $\overline{\text{MPA}}$

4 < *Mμμ*< 9 *GeV/c²*

Improved CEDAR:

Expected Statistics of Unpolarized Drell-Yan Events

NH³ Al (7cm) W π^- beam [−] **beam 140,000 27,100 270,000** [−] **beam 1,750 350 3,700 beam 1,260 220 1,800** DY ($4 < M_{\mu\nu} < 9$ *GeV/c*²) 140-day data taking, with the efficiencies of 2015 DY run. **NA3 21,220 700 E615 27,977 E537 387 NA10 284,200**

COMPASS could improve the existing statistics of π , K and \bar{p} induced DY by a factor of **2-10**!

WHAT ABOUT A RF SEPARATEDp BEAM ???

First and very preliminary thoughts, guided by

- recent studies for P326
- CKM studies by J.Doornbos/TRIUMF, e.g. http://trshare.triumf.ca/~trjd/rfbeam.ps.gz

E.g. a system with two cavities:

 $\Delta\Phi = 2\pi$ (L f / c) (β_1 ⁻¹ - β_2 ⁻¹) with β_1 ⁻¹ - β_2 ⁻¹ = (m₁²-m₂²)/2p²

Base rough estimates on acceptance values for RF separated K⁺ beam (as provided by J.Doornbos)

As the p kick is more favourable than for K^+ , I assume that 80% of p pass beyond the beam stopper.

Acceptance 10π usterad, 2 GeV/c

VERY PRELIMINARY CONCLUSION

H.W.Atherton formula tells us : 0.42 p / int.proton / GeV

Assume target efficiency of 40%

Then for 10¹³ ppp on target one obtains:

 $0.4 \cdot 10^{13} \cdot 0.42 \cdot \pi \cdot 10^{-5} \cdot 2 \cdot 0.8$ ppp = **8 10⁷ ppp**

for a total intensity probably not exceeding 10¹³ ppp, knowing that e^- and π are well filtered, but K⁺ only partly.

Due to 10⁸ limit on total flux, max antiproton flux remains limited by purity (probably about 50%). Hence \approx **5 10⁷ ppp**

RF/Separated Kaon/antiproton : Expected Statistics of Unpolarized Drell-Yan Events

A flux of **1x107 /sec** for kaon/antiproton is assumed.

DY ($4 < M_{\mu\nu} < 9$ *GeV/c*²) 140-day data taking, with the efficiencies of 2015 DY run.

COMPASS could improve the existing statistics of K and \bar{p} induced DY by a factor of **50-100**!

Conclusions

- Drell-Yan process is a powerful tool to explore the partonic structures of nucleons and (unstable) mesons.
- Drell-Yan program with Improved CEDAR/RFseparated beam and $LH_2/LD_2/n$ uclear targets will bring unique opportunities for COMPASS to address many important unresolved issues in understanding the flavor and TMD structures of proton, antiproton, pion, kaon and nuclei.