

Initial Measurements of Hadron Spectroscopy and Nucleon Structure with Antiprotons by PANDA

COMPASS Beyond 2020 Workshop

Outline

- Overview of PANDA Physics Program
- Nucleon Structure Measurements examples: Time-like nucleon FF, TDAs
- Hadron Spectroscopy
 → X,Y, Z States, Hyperons, Open Charm
- Status of Detector systems
- Summary

PANDA Objectives

HEP: interference of coupled channels

Spectroscopy

New narrow XYZ: Search for partner states

Production of exotic QCD states: Glueballs & hybrids

Astro physics: Strange n-stars Strangeness

Strange baryons:

Spectroscopy

Polarisation

Nuclear physics:

Hypernuclear spectroscopy

Bound States of Strong Interaction

Nuclear Physics

Hypernuclear physics:

Double Λ hypernuclei

Hyperon interaction

HEP: underlying elementary processes

Nucleon Structure

Generalized parton distributions:

Orbital angular momentum

Drell Yan process:

Transverse structure, valence anti-quarks

Timelike formfactors:

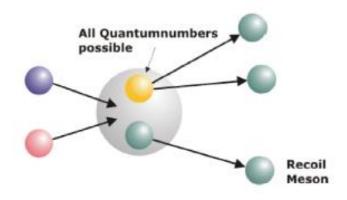
Low and high E,

e and µ pairs HI collisions

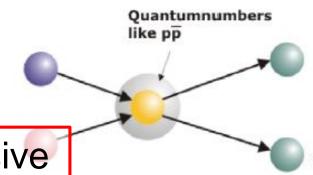
comparing QGP

Hadrons in nuclei: to elementary

Charm and strangeness reactions


in the medium

Antiproton Annihilations: Gluon Rich Environment


Production: all states with exotic and non-exotic quantum numbers accessible with a recoil

high discovery potential
 Associated, access to all quantum numbers (exotic)

Formation: all states with non-exotic quantum numbers accessible

- not only limited to 1-- as e+e- colliders
- precision physics of known states
 Resonant, high statistics,
 extremely good precision
 in mass and width

antiproton probe unique and decisive

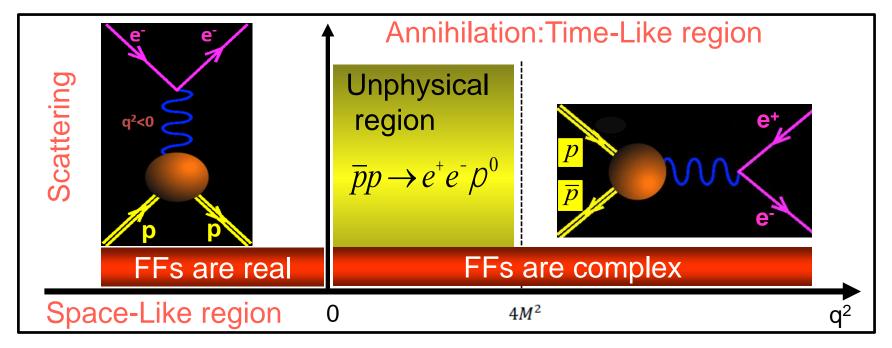
PANDA: Comparison with other Techniques

- e⁺e⁻ (BaBar, BES-III, CLEO-C, Belle II)
 - direct formation limited to JPC=1-
 - sub-MeV for masses and widths close to impossible
 - high L not accessible
- high-energy (several TeV) hadroproduction (LHC)
 - high combinatorial background: discovery very difficult
 - Width measurements limited by detector resolution
- B-decays (both for e⁺e⁻ and hadroproduction)
 - limited JPC
 - C cannot be determined (not conserved in weak decay)

Key-Experiments of the Start Phase

Concentration on unique and forefront physics topics

- Precise measurement of the line shape of narrow XYZ-states, e.g. X(3872)
 (only possible in proton—antiproton, counting experiment, clarification of the nature of the states)
- Resonant formation of the negative and uncharged partners of the Z-States
 (only possible in proton–antiproton, clarification of the nature of the states)
- (Parasitic) production of multi-strangeness baryons (unexplored, new territory, "Strangeness-Factory")
- Parasitic production of high spin charmonia (only possible in proton—antiproton)
 light mesons, baryons and production of hybrids und glueballs
- Measurement of the electromagnetic form factors of the proton in the time-like domain with muons in the final state

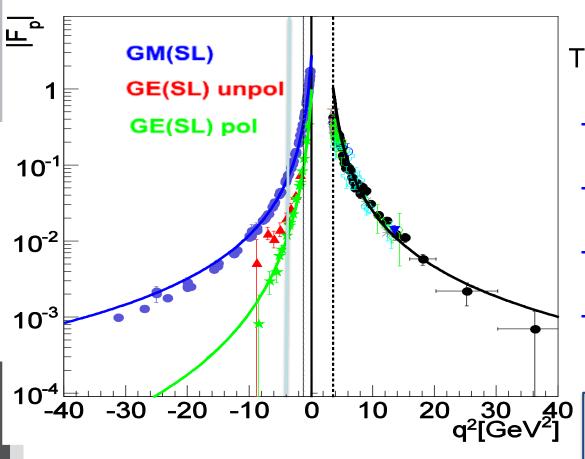

XYZ-, hyperon factory

Proton Electromagnetic Form Factors

Electromagnetic Form Factors: the Analyticity

At the threshold: $G_E(4M^2) = G_M(4M^2)$ (only s-wave)

Point-like proton: $G_E(4M^2) = G_M(4M^2) = 1$


Unified frame for the description of FFs:

$$G(q^{2}) = \frac{1}{\pi} \left[\int_{4m_{\pi}^{2}}^{4m_{p}^{2}} \frac{\operatorname{Im} G(s) ds}{s - q^{2}} + \int_{4m_{p}^{2}}^{\infty} \frac{\operatorname{Im} G(s) ds}{s - q^{2}} \right]$$

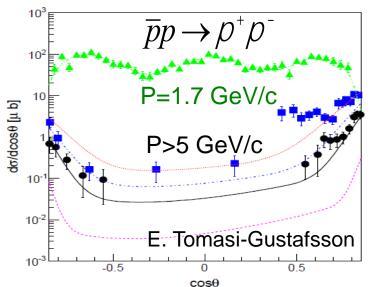
$$\lim_{q^2\to-\infty}G_{E,M}^{SL}(q^2)=\lim_{q^2\to+\infty}G_{E,M}^{TL}(q^2)$$

The measurement of the Form Factors at large q² and in all the kinematical region: test of the analytical nature of the FFs

Data on Proton Electromagnetic Form Factor JÜLICH FORSCHUNGSZENTRUM

The Experimental Status (TL)

- No individual determination of G_F and G_M
- TL proton FFs twice larger than in SL at the same Q²
- Steep behaviour at threshold
- Babar:Structures?
 Resonances?


S. Pacetti et al., Physics Reports, 514 (2014) 1

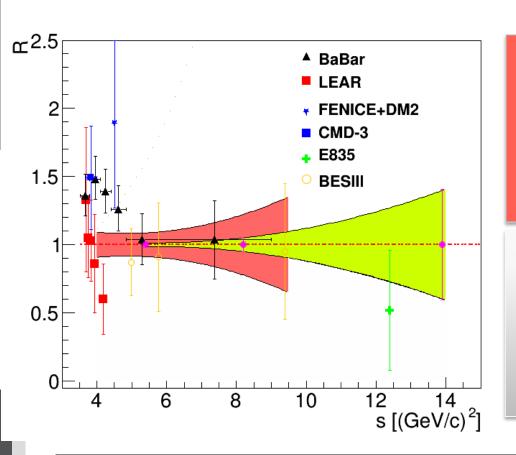
QCD based model is not able to reproduce the polarized SL data VMD model is not able to reproduce the TL data at large momenta

Feasibility Studies for $\overline{p}p \rightarrow e^+e^-$ at PANDA

Main issue: signal identification from the huge hadronic background

Reaction mechanism changes with the energy and the angle:

- Low energy: Legendre polynomials
- High energy: Regge inspired parametrization


$$\frac{S(p^+p^-)}{S(e^+e^-)} @ [10^5 - 10^6]$$

A background rejection at the order of 10⁻⁸ is achieved

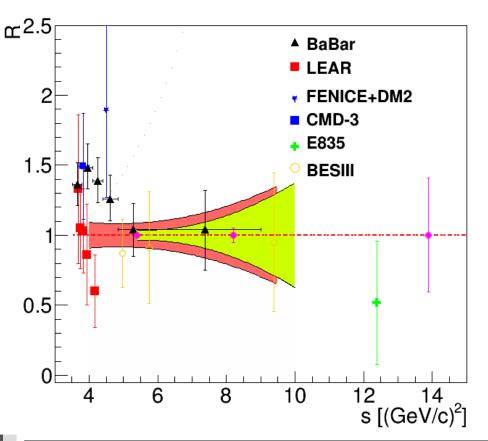
Expected Reach:

Full Luminosity

21 scan points 2015 (552 pb⁻¹)

Monte Carlo Sim., R=1 (C. Morales)

L=2 fb⁻¹ 2×10^{32} cm⁻¹ s⁻¹


~5 months data taking /point

	BESIII	PANDA (e+e-)	PANDA (mu+mu-)
s [(GeV/c) ²]	4 - 9.5	5 - 14	5 - ~9
$R= G_E / G_M $	9 % - 35 %	1.4 % - 41 %	5 % - 18.7 %

Expected Reach:

Starting Luminosity

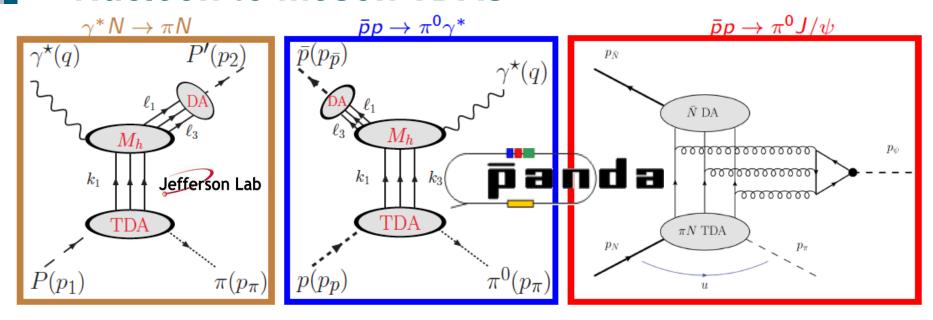
21 scan points 2015 (552 pb⁻¹)

Monte Carlo Sim., R=1 (C. Morales)

L=0.2 fb⁻¹ 2×10^{31} cm⁻¹ s⁻¹

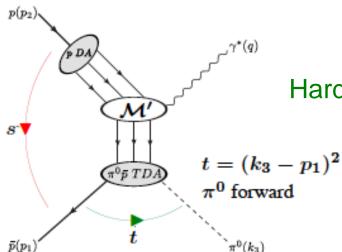
~5 months data taking /point

	BESIII	PANDA (e+e-)	PANDA (mu+mu-)
s [(GeV/c) ²]	4 - 9.5	5 - ~10	@ 5.4
$R= G_E / G_M $	9 % - 35 %	3.5 % - 38 %	13.3 %

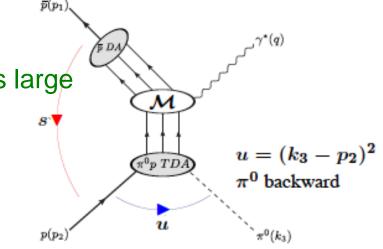

Study for a polarized target → 1st measurement of the relative phase G_E/G_M

Transition Distribution Amplitudes

Nucleon to meson TDAs



- Occur in collinear factorization description of various hard exclusive processes
- Parameterized as a function of momentum fraction (x_i) , skewness (ξ) and momentum transfer squared (t,u)
- Independent of reaction type, s and q²
- Give information on pionic components of the nucleon wave-function


TDAs with the $\bar{p}p \rightarrow g^*p^0 - > e^+e^-p^0$ channel

Luminosity= 2 fb⁻¹

Hard scale: q² is large

t is small (forward kinematics, pi-N TDAs)

u is small (backward, pi-Nbar TDAs

Feasibility studies of measuring $\bar{p}p \rightarrow g^*p^0 - e^+e^-p^0$ at PANDA

i)
$$s = 5 \, \mathrm{GeV^2}$$
 \rightarrow $3.0 < q^2 < 4.3 \, \mathrm{GeV^2}, |\cos \theta_{\pi^0}| > 0.5$

ii)
$$s = 10 \ GeV^2 \rightarrow 5 < q^2 < 9 \ GeV^2, |\cos \theta_{\pi^0}| > 0.5$$

Background suppression of the $\overline{p}p \to p^+ p^- p^0$ and measurement precision:

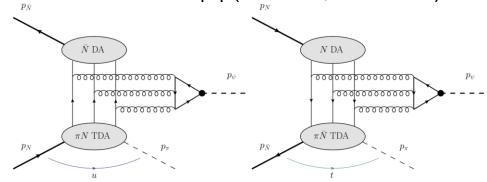
$$s = 5 \text{ GeV}^2$$
: $5 \times 10^7 (1 \times 10^7)$ $DS/S \sim 12\%$
 $s = 10 \text{ GeV}^2$: $1 \times 10^8 (6 \times 10^6)$ $DS/S \sim 24\%$

$$S/S \sim 24\%$$
 Eur.Phys.J. A51 (2015) 8, 107

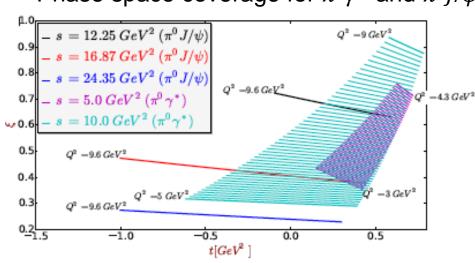
Published in

Accessing TDAs in the $\overline{p}p \rightarrow J/yp^0 - > e^+e^-p^0$ Channel

Test of universality of TDAs

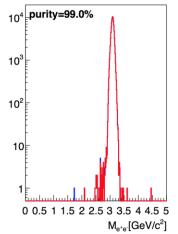

- Validate independence on reaction type, Q² and s
- Complementary to $\pi^0 \gamma^*$
- Different phase-space coverage in skewness (ξ) vs momentum transfer (t) space

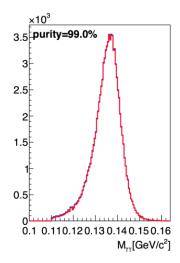
Additional Items being discussed

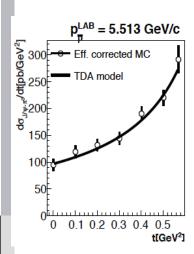

- Other potential background sources
 - $\pi^0\pi^0\pi^+\pi^-$, $\pi^0\pi^+\pi^-\pi^+\pi^-$
 - $\pi^0 \pi^0 J/\psi$
- 4C kinematic fitting
 - Signal hypothesis
 - $\pi^0\pi^0J/\psi$ bkg hypothesis
- Signal purity
- MSV luminosity

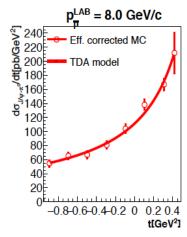
Two validity regimes

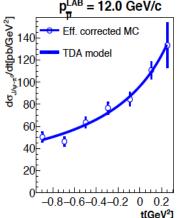
- Small |t| (Fwd. π^0 , πN bar TDAs)
- Small |u| (Bwd. π^0 , πN TDAs)


Phase space coverage for $\pi^0 \gamma *$ and $\pi^0 J/\psi$



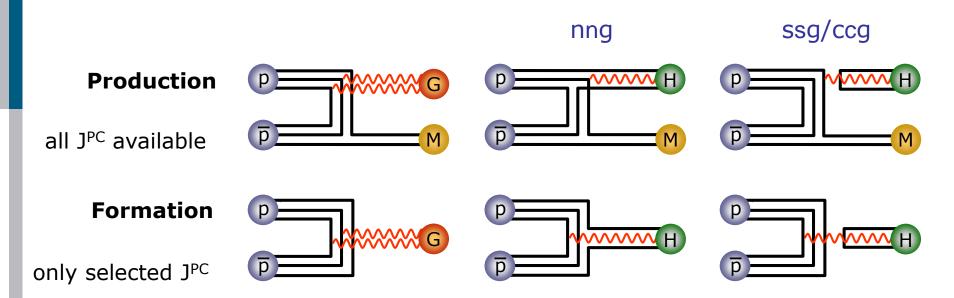



Efficiency, Purity, Precision for $\pi^0 J/\psi \to \gamma \gamma e^+ e^-$

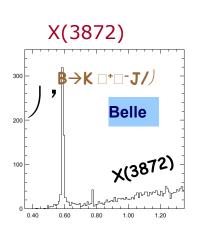

- New set of cuts including kinematic fit implemented:
 - Background contamination <~ 1% attained for all sources
 - Signal efficiency sufficient to attain 5-10% relative uncertainty with full setup (2fb⁻¹, 5 months)

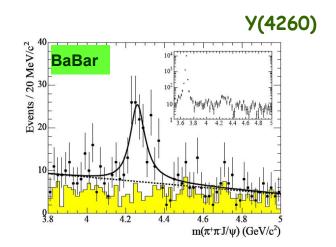
- MSV setup (4 months)
 - Statistics will be too low even for single differential cross-section measurement, but useful for
 - Checking order of magnitude of cross-sections
 - Constraining pionic background sources with cross-sections in the mb range

Many More Measurements Have Been Studied


Signal	Physics	s [Gev²]	S/B	Status
$\overline{p}p \rightarrow e^{+}e^{-}$	FFs	5.4, 8.2, 13.9	>100	Feasibile
$\overline{p}p \rightarrow m^+ m^-$	FFs	5.4	1/4	Feasibile
$\bar{p}p \rightarrow g^* \rho^0$	TDAs	5.0 10.0	5 x 10 ⁷ (1 x10 ⁷) 1 x10 ⁸ (6 x10 ⁶)	Feasibile
$\overline{p}p \rightarrow J/yp^0$	TDAs	P=5.513 P=8.0 P=12.0	>8 >70 >600	Feasibile
$ \overline{p}p \to gg \\ \overline{p}p \to p^0 g $	GDAs	2.5, 3.5, 4.0, 5.5	1 2	Feasibile
$\overline{p}p \rightarrow m^+ m^- X$	TMD PDFs	30	in progress	Feasibile

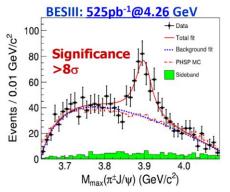
Hadron Spectroscopy


Exotic Hadrons I: Hybrids and Glueballs



Sound theoretical predictions from models and LQCD Gluon rich process creates gluonic excitation in a direct way Access to both exotic and non-exotic quantum numbers Highest precision for direct formation Access to both light and charm energy range UNIQUE to PANDA

Exotic Hadrons II: X, Y, Z



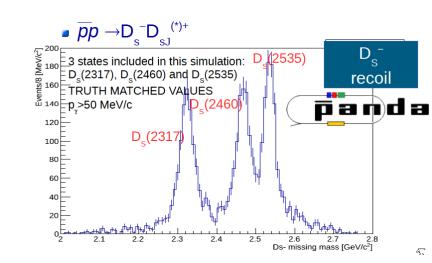

Need systematic approach with the capability to carry out high-precision measurements to map out completely the spectrum of these news states, in order to understand their nature: PANDA will be unique in achieving this.

PANDA is an X Y Z factory (reco) 350 X(3872)/day 820 Y(4260)/day 176 Z(3900)/day

widths rare decays Jim Meutral partner

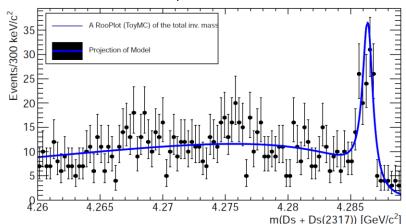
$Z_c(3900)$ at BESIII

Reconstructed width Γ_{X(3872)} is consistent with input width of 100 keV.*



Open Charm

- QCD laboratory
- Intermediate case between heavy and light quarks
- Interesting spectroscopy
- Weak interactions

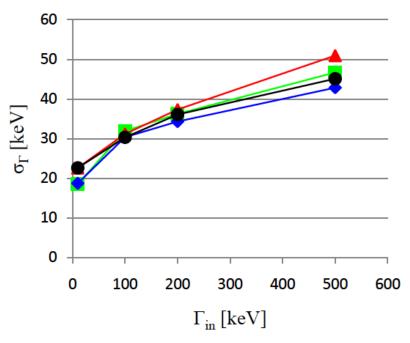

Unique features at PANDA:

- width measurement of D_{sJ}(2317)
 (30-100 keV) (threshold scan)
- Access to high L (available in pp, suppressed in B decays)

Simulation:

1 week data, S/B 0.2 eff ~ 3%

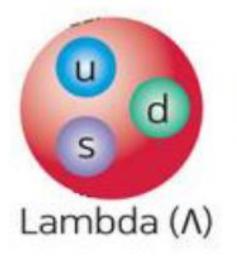


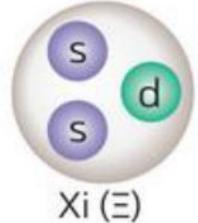


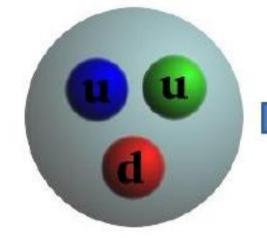
Threshold Scans of e.g. Open Charm

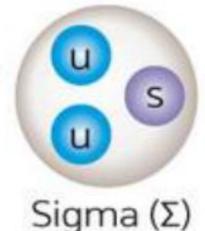
Width strongly effects rates near threshold

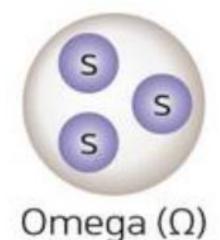
Resolution ~ 50 keV








Strange and Charmed Hyperons


What happens if we replace one of the light quarks in the proton with one - or many - heavier quark(s)?

Strange and Charmed Baryons

- Light quark (u, d) systems:
 - Highly non-perturbative interactions.
 - Relevant degrees of freedom are hadrons.
- Systems with strangeness
 - Scale: m_s ≈ 100 MeV ~ $\Lambda_{\rm QCD}$ ≈ 200 MeV.
 - Relevant degrees of freedom?
 - Probes QCD in the intermediate domain.
- Systems with charm
 - Scale: m_c ≈ 1300 MeV.
 - Quark and gluon degrees of freedom more relevant.
 - By comparing strange and charmed hyperons we learn about QCD at two different energy scales.

Baryon Spectroscopy

- New baryon states ?
- Properties of already known states.
- Symmetries in observed spectrum.

Baryons in PANDA

- Large cross section s for pp → YY
 - p̄p → ΞΞ̄ ≈ μb
 - $\overline{p}p \rightarrow \Omega \overline{\Omega} \approx 0.002 \div 0.06 \ \mu b$
- No extra mesons in final state needed for strangeness or charm conservation
- Symmetry in hyperon and antihyperon
- PANDA detector versatile

Prospects for PANDA

S=2 hyperons (Ξ)

S=0 baryons (N)

S=1 hyperons (Λ)

S=3 hyperons (Ω)

Charmed (N_c, Σ_c) Hidden charm (N_{cc})

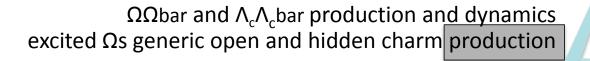
PANDA is a Strangeness Factory

Spin Observables in Hyperon Production

The parity-violating weak decay of hyperons gives access to spin observables even for unpolarised beam/target. These observables give insight in the production mechanism of hyperons (e.g. the role of spin in strangeness and charm production).

Unique to PANDA: the study of these observables and especially the hyperon-antihyperon spin correlations.

Momentum (GeV/c)	Reaction	σ (μb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻¹ s ⁻¹)
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	10	28 s ⁻¹
4	$\overline{p}p \to \overline{\Lambda}\Sigma^{\circ}$	~40	30	30 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Xi}^+\Xi^-$	~2	20	1.5 s ⁻¹
12	$\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$	~0.002	30	~4 h ⁻¹
12	$\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	35	~2 day ⁻¹


- High event rates for Λ and Σ
- Low background for Λ and Σ*.
- Ω channel feasible
- \(
 \Lambda_c\) requires high luminosity **

Potential Run-Plan – Overview first 2 years

survey light and heavy exotics generic open charm production

15.0

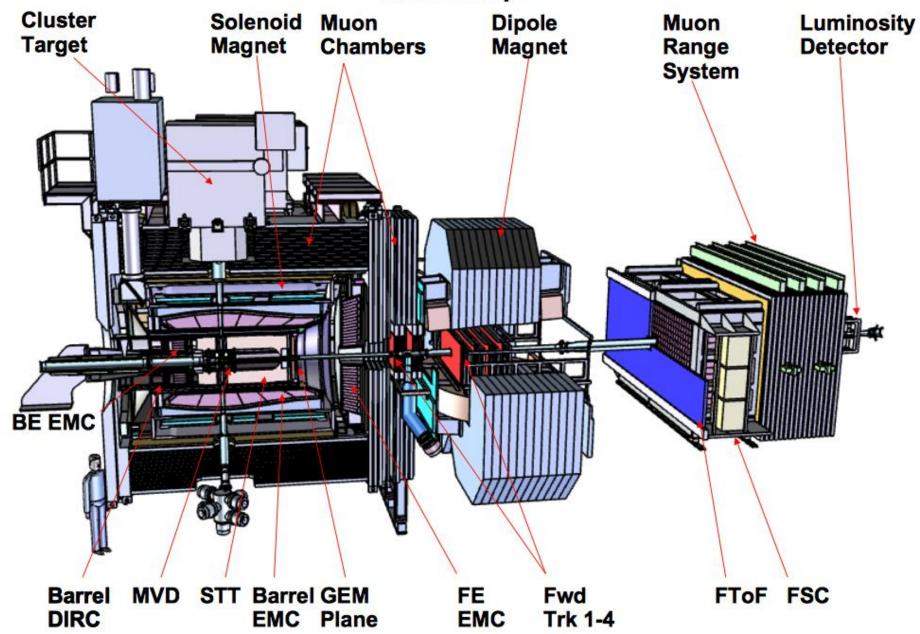
12.0

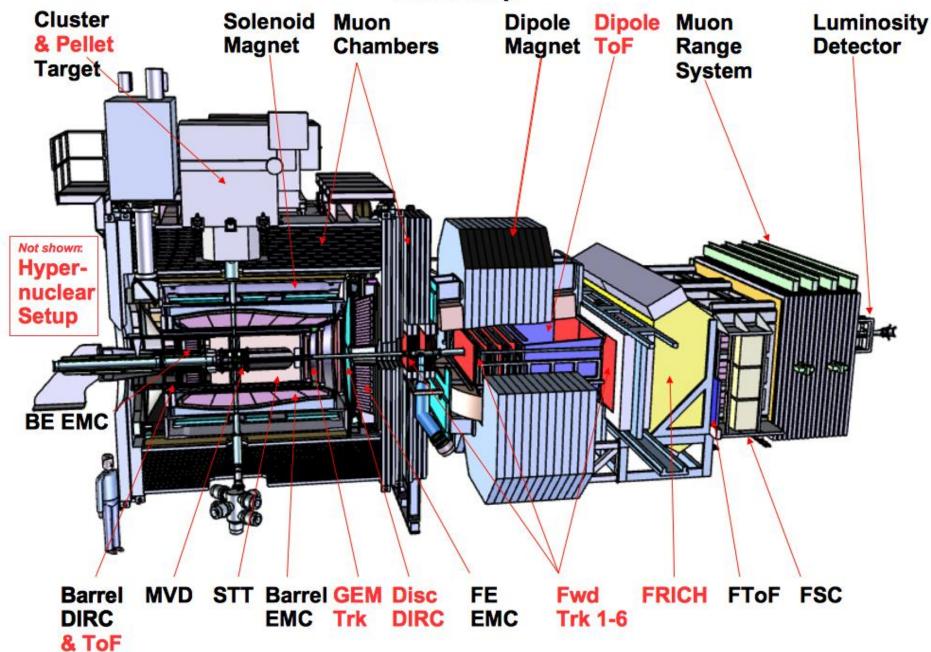
length of run

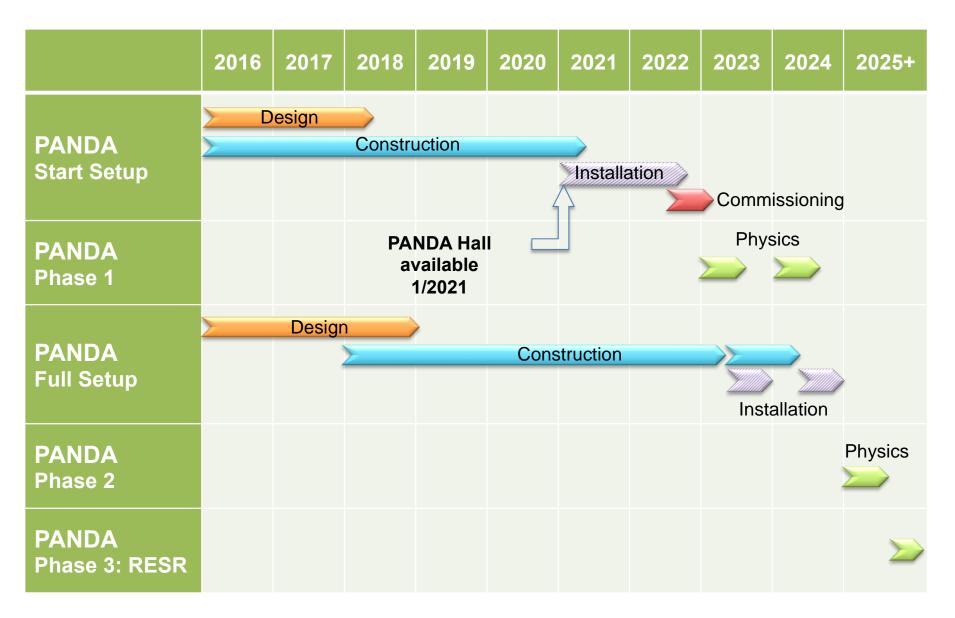
$\Delta\Delta$ content of the deuteron – feasibility of phard meson spectroscopy 8.0	
X(3872) scan 7.0	
χ_{c2} angular distribution χ_{c1} ang. distr. and excited Ξs $\Xi\Xi bar$ production and dynamics $\Upsilon(2175)$ and $\Phi\Phi$ - T/PS-glueball search Ξ -Atoms and excited Λs Ξ -Atoms and excited Λs Ξ -Atoms and excited Λs Ξ -Atoms and Ξ -Atoms a	
pbar and Λbar-potentials (N, Ne, Ar targets) 2.0 1.64 GeV/c	

time-like form-factors - meson spectroscopy -ΛΛbar physics

Status of the Detector System

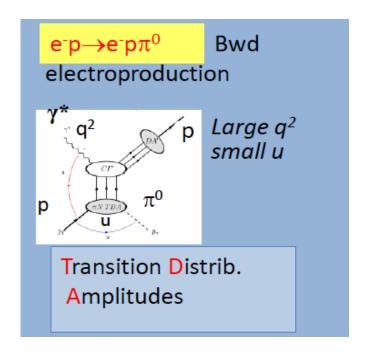

HESR: On-time, On-budget

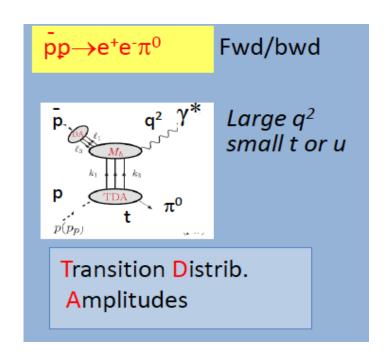

Dipole magnets in Jülich, first delivery of completed modules to Darmstadt


Start Setup

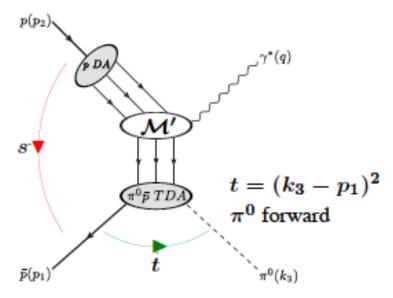
Full Setup

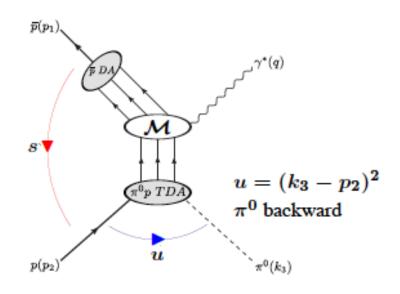
PANDA Phases


PANDA: Excellent Physics Opportunity JÜLICH FORSCHUNGSZENTRUM


- FAIR will be the main international laboratory for strong interaction studies at all length scales: PANDA-experiment 1 of 4 Pillars
- Clear strategy for a strong PANDA physics case with high impact for the start phase
- PANDA detector for the start phase defined in line with FAIR high level time schedule
- PANDA Detector for the start phase already now: approved TDRs represent 86% of cost

Transition Distribution Amplitudes




Transitions Distribution Amplitudes:

$$\bar{p}p \rightarrow e^+e^-\pi^0, e^+e^-\rho^0, e^+e^-\eta, \dots$$

- Describe the transition between two particles
- Explore pionic components in the nucleon wave function
- Transverse picture of the pion cloud
- Universality: the same TDA could be measured in different kinematics or different reactions

Signal channel:
$$\overline{p}p \rightarrow g^*p^0 - > e^+e^-p^0$$

$$\mathcal{M}(\bar{p}p \to \gamma^*\pi^0) = \mathcal{M}_{parton, parton} \otimes distribution amplitude (DA) and TDA$$

Admits a factorized description when:

B. Pire et al. PRD 76, 111502

q² is large (q²≈s)

(2007)

t is small (forward kinematics, pi-N TDAs), or u is small (backward, pi-Nbar TDAs)

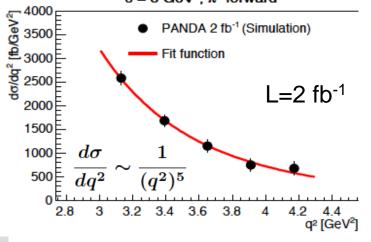
[check the symmetry violation between proton and antiproton] TDAs are related to the proton FFs by integration over all variables but q².

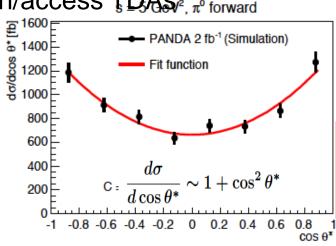
Feasibility studies: nucleon to meson TDAs @

Feasibility studies of measurin
$${\mathfrak p}_p \! o \! g^* \rho^0 -> e^+ e^- \rho^0$$

at PANDA

i)
$$s = 5 \text{ GeV}^2$$
 \rightarrow $3.0 < q^2 < 4.3 \text{ GeV}^2$, $|\cos \theta_{\pi^0}| > 0.5$


ii)
$$s = 10 \text{ GeV}^2 \rightarrow 5 < q^2 < 9 \text{ GeV}^2, |\cos \theta_{\pi^0}| > 0.5$$


Background suppression of th $p \rightarrow p^+ p^- p^0$

and measurement

precision:
$$GeV^2$$
: $5 \cdot 10^7 (1 \cdot 10^7)$ $DS/S \sim 12\%$ $S = 10 GeV^2$: $1 \cdot 10^8 (6 \cdot 10^6)$ $DS/S \sim 24\%$

Test of the QCD factorization/access TDAs<sub>e, π⁰ forward
</sub>

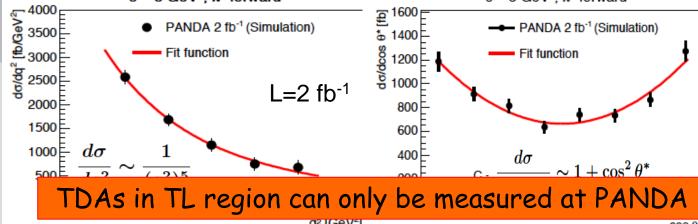
M. Carmen Mora Esp et al. (HIM). Submitted to EPJA

Feasibility studies: nucleon to meson TDAs @

Feasibility studies of measurin
$${f g}_{p}$$
 $ightarrow$ g^{*} ho^{0} - $>$ e^{+} e^{-} ho^{0}

at PANDA

i)
$$s = 5 \text{ GeV}^2$$
 \rightarrow $3.0 < q^2 < 4.3 \text{ GeV}^2$, $|\cos \theta_{\pi^0}| > 0.5$

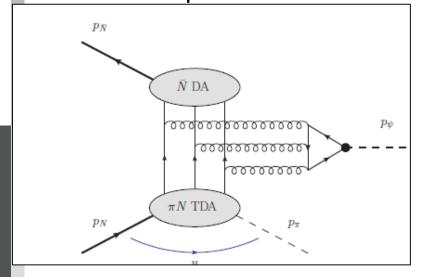

ii)
$$s = 10 \text{ GeV}^2 \rightarrow 5 < q^2 < 9 \text{ GeV}^2, |\cos \theta_{\pi^0}| > 0.5$$

Background suppression of th $p p \rightarrow p^+ p^- p^0$

and measurement

precision:
$$GeV^2$$
: $5.10^7 (1.10^7) Ds/s \sim 12\%$
 $s = 10 GeV^2$: $1.10^8 (6.10^6) Ds/s \sim 24\%$

Test of the QCD factorization/access TDAs<sub>e, π⁰ forward
</sub>

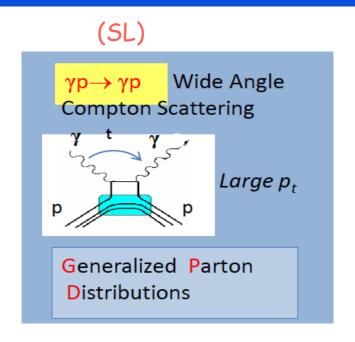


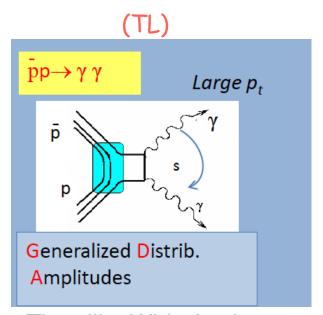
M. Carmen Mora Espet al. (HIM).
Submitted to EPJA

Nucleon to meson TDAs @ PANDA

Signal channel
$$\overline{p}p \rightarrow J/yp^0 - > e^+e^-p^0$$

- High signal cross section
- Large q^2 fixed to $M_{J/V}^2$ (facorization theorem is likely reached)
- Reduces uncertainty on DAs by using the data on the partial decay modes
- Test of universality of TDAs by comparing $p \to g^* \rho^0 e^+ e^- \rho^0$ at different q^2


Feasibility studies for PANDA @ p=5.513, 8 and 12.0 GeV/c:

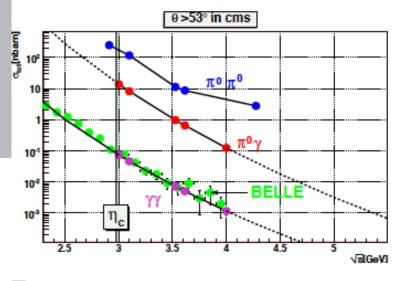

S/B> 8, 70, 600

Binsong Ma, PhD thesis, IPNO 2014 Ongoing work by Ermias Atomsa et al. (IPNO

Generalized Distribution Amplitudes

Hard exclusive processes at large P₁: GDAs

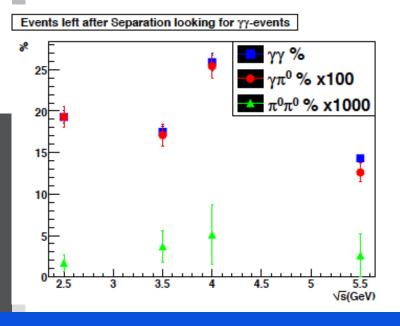

Time-like Wide Angle Compton Scattering (WACS)

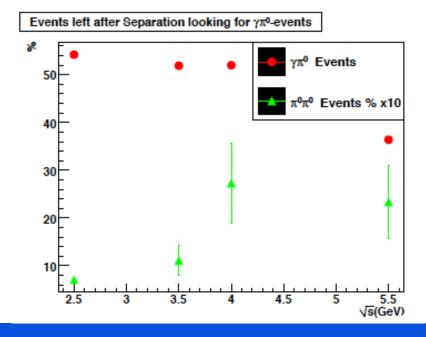

The QCD factorization theorem allows us to calculate high energy cross sections separating short-distance process with long-distance non perturbative functions

Hard scale is defined by the large transverse momentum of the final state photon

WACS process: give access to the GDAs, the counterpart of the GPDs

$$\overline{p}p \rightarrow gg$$

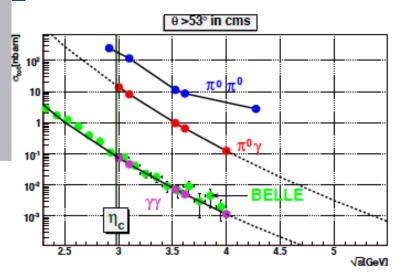



PANDARoot simulations:

- 4 different CM energies
- Main background channels:

$$\overline{p}p \to \rho^0 \rho^0$$
 (for both signals)
 $\overline{p}p \to \rho^0 g$ (for signal1: $\overline{p}p \to gg$)

PANDA Physics Performance Report arXiv:0903.3905



Feasibility studies for $pp \rightarrow gg$

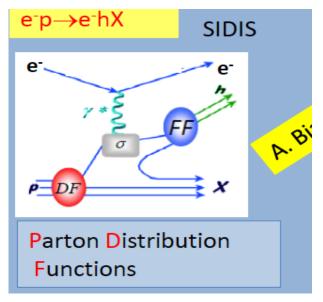
PANDARoot simulations:

- 4 different CM energies
- Main background channels:

$$\overline{p}p \rightarrow \rho^0 \rho^0$$
 (for both signals)
 $\overline{p}p \rightarrow \rho^0 g$ (for signal1: $\overline{p}p \rightarrow gg$

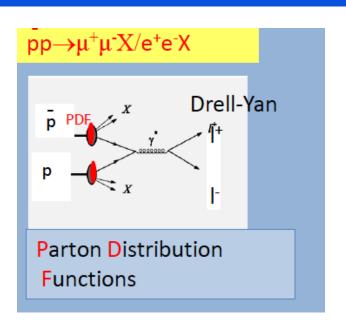
Events left after Separation looking for γγ-events

Events left after Separation looking for $\gamma\pi^{\!\scriptscriptstyle 0}\text{-}events$

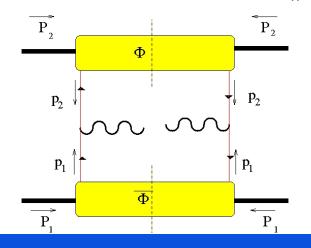

Time-like wide angle Compton scattering and hard exclusive meson production can be measured at PANDA

S/B~1 for
$$\overline{p}p \rightarrow gg$$
 (25% efficiency)
S/B~2 for $\overline{p}p \rightarrow p^0g$ (50% efficiency)

Further studies are required for precise predictions

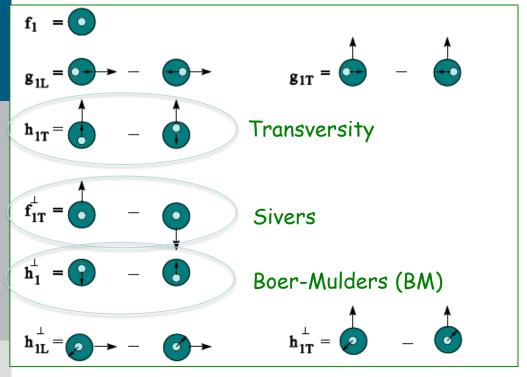


Drell-Yan processes at PANDA



PDFs are convoluted with the fragmentation

- @ FAIR unique energy range up to s~30 GeV2 with PANDA up to s~200 GeV2 with PAX
- @ much higher energies→ big contribution from sea-quarks
- @ppbar annihilation each valence quark contribute
 to the diagram



Handbag diagram: s>>M_h²

Transverse momentum dependence PDFs

ransverse Momentum Dependence (TMD leading-order) formalism:

 \dot{J} : angle between hadron and lepton planes \dot{J}_{s2} : angle between hadron spin and lepton plane

Test of Universality and the QCD TMD factorization:

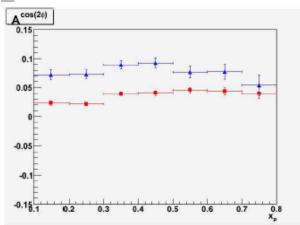
Asymmetry measurements:

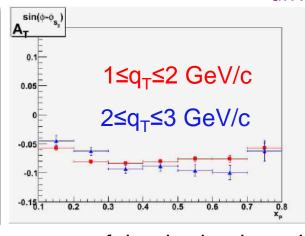
Unpolarized DY

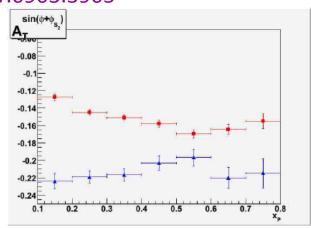
$$A^{\cos 2j} \rightarrow h_1^{\hat{}}$$

Single-polarized DY

$$A^{\sin(j \pm j + s2)} \rightarrow h_1^{\land}, h_{1T}, f_{1T}^{\land}$$


$$A = \frac{U - D}{U + D}$$


$$f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$$
$$h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$$


Feasibility measurement of DYs at PANDA

Feasibility studies using Monte-Carlo simulation:

- Signal: $\overline{p}p \to m^+ m^- X$ Unpolarized DY $\overline{p}p^\uparrow \to m^+ m^- X$ Single-polarized DY
- Main background: $\overline{p}p \rightarrow n(\rho^+ \rho^-)X$, required rejection factor ~10⁷
- Simulations @ s=30 GeV² ahd £ M_{g*} £ 2.5 (non resonance region, large cross section)
 N_{gen}=480 . 10³, 5 months with L=2 . 10³² cm⁻² And Physics Performance Report arXiv:0903.3905

x_p: the longitudinal momentum of the hadronic probe

Feasibility measurement of DYs at PANDA

Feasibility studies using Monte-Carlo simulation:

- Signal: $\overline{p}p \to m^+ m^- X$ Unpolarized DY $\overline{p}p^\uparrow \to m^+ m^- X$ Single-polarized DY
- Main background: $\overline{p}p \rightarrow n(\rho^+ \rho^-)X$, required rejection factor ~10⁷
- Simulations @ s=30 GeV² aħð £ M_{g^*} £ 2.5 (non resonance region, large cross section N_{gen}=480 . 10³, 5 months with L=2 . 10³² cm⁻² And Physics Performance Report arXiv:0903.3905

Acceptance, efficiency corrections, background rejection are still Under unvestigation: expectation: 130. 103 DY/month

One year data taking: azimuthal asymmetries with uncertainties of The order of the presented one

A lot of progress

- Different event generators for signal and background channels are implemented in PANDARoot
- New method for correcting electron reconstruction for the Bremsstrahlung effect is developed
- Bayesian PID methods for the lepton/hadron separation have been developed
- Theoetical calculations on radiative corrections for the proton FFs measurement at PANDA are performed
 - New event generator is planned