
26.02.2016

Buffer Allocation for Shared Buffers

without Copying

David Rohr, drohr@cern.ch

Frankfurt Institute for Advanced Studies

CERN, 26.2.2016

mailto:drohr@cern.ch

26.02.2016

226.02.2016

Data headers

• In CWG 4, we foresee multiple input and output data blocks per device.

• The payload of each data block is continuous in memory (and has variable size).

• The payload can be serialized. We support multiple serialization methods. Serialization / Deserialization should be

automatized.

• Plain (non-serialized) data is just one trivial serialization method.

• Deserialization simply returns the plain pointer to the payload.

• Each payload data block has a header.

• The header size is variable.

• Each header begins with a fixed common header structure, and can contain additional stacked headers with

additional header information for this block (e.g. trigger information for data sources of triggered detectors).

• The stacked headers can be serialized objects as well. We want to support the same mechanisms as for the

payload, with the same automation for serialization / deserialization.

• Access over multiple input buffers via iterators (or similar):

• The device queries an iterator for all payload blocks with a certain data type and data origin (e.g. TPC Raw).

• Via the iterator, the device gets meta information from the header, and a pointer to the data buffer (for a plain

data buffer), or a pointer to the deserialized object (for a serialized buffer).

• Analogously for additional stacked headers.

326.02.2016

What does this mean for the transport layer

• The transport layer must transfer an amount of pairs: payload buffers and headers.

• The relation of header to buffer must be maintained.

• The size of each payload buffer and of each header is variable.

• The positions of headers and payload in memory is arbitrary.

• But: each header and each payload on its own is in continuous memory (ongoing discussion in CWG4, but this is the goal):

• The device starts processing only after all input data blocks are available  They must be gathered beforehand.

• The receiving device can select input data depending on the data type / origin in the common part of the header. Data not

matching the selection should not be transferred.

Memory Node 1 Memory Node 2

Header 1

Payload 1
(Serialized)

Header 2

Payload 2
(Plain)

Header 1

Payload 1
(Serialized)

Header 2

Payload 2
(Plain)

Header 1

Common

Part

Stacked

Header 1

Stacked

Header 2

• To the transport layer, the header is

just one chunk of data.

• The header contains only meta data

for the payload

• There is no pointer to the real

payload!

• This pointer is different on

every compute node and is

maintained by the framework.

426.02.2016

Interface Feature Example Pseudocode

• We can use an iterator concept to iterate over input data and stacked headers.

• For instance, we could use STL (see Mikolaj’s example later)

• It might be convenient to foresee a method to forward data buffers.

• See below some generic pseudocode:
• Terminology: FRAME: one data buffer plus its header.

MESSAGE: a vector of frames

iter = Framework.GetInputMessageIterator(DATA_TYPE_RAW, DATA_ORIGIN_TPC); //PAYLOAD ITERATOR

while (frame = iter->Next())

{

stackedHeaderIterator = frame->GetStackedHeaderIterator(HEADER_TYPE); //STACKED HEADER ITERATOR

if (stackedHeader = stackedHeaderIterator->Next())

{

if (…) Framework.ForwardFrame(frame);

}

dataPtr = frame->GetPayload(); //Returns a pointer to (possibly) deserialized payload

}

Framework.AppendOutputFrame(…);

26.02.2016

626.02.2016

Sending Messages without Copying

• We want a message-queuing based approach.

• The approach should be such, that no copies are needed.

• Messages must be passed between the processes on one node.

• And between processes on different nodes.

• Our interface should be such, that we can make use of efficient network DMA transfer offered by the

interconnect.

• We must get data from the CRU FPGA PCIe card.

• How should this work behind the scenes?

726.02.2016

Basic Example 1

• The most basic example: Two components on the same node:

• Probably, this is the most frequent case: Most data transport will be between the individual processing devices

processing one timeframe, and these will reside on the same EPN node.

• Device 1 produces its output data, which is used by device 2.

• If device 1 allocates the buffer for its output data, then there are three possibilities:

• A) Device 1 has to wait with the deallocation, until device 2 is finished.

• B) Device 2 takes ownership of the buffer and handles the deallocation.

• C) The data must be copied.

Node 1

Proces

-sing

Device

1

Proces

-sing

Device

2

826.02.2016

Basic Example 1

• The most basic example: Two components on the same node:

• Probably, this is the most frequent case: Most data transport will be between the individual processing devices

processing one timeframe, and these will reside on the same EPN node.

• Device 1 produces its output data, which is used by device 2.

• If device 1 allocates the buffer for its output data, then there are three possibilities:

• A) Device 1 has to wait with the deallocation, until device 2 is finished.

• B) Device 2 takes ownership of the buffer and handles the deallocation.

• C) The data must be copied. [We want to avoid this]

Node 1

Proces

-sing

Device

1

Proces

-sing

Device

2

926.02.2016

Basic Example 2: Two consumers

• The most basic example: Two components on the same node:

• Probably, this is the most frequent case: Most data transport will be between the individual processing devices

processing one timeframe, and these will reside on the same EPN node.

• Device 1 produces its output data, which is used by device 2.

• If device 1 allocates the buffer for its output data, then there are three possibilities:

• A) Device 1 has to wait with the deallocation, until all consumers are finished.

• B) The consumers take ownership of the buffer and handles the deallocation.

• C) The data must be copied. [We want to avoid this]

Node 1

Proces

-sing

Device

1

Proces

-sing

Device

2a

Proces

-sing

Device

2b

• There is also the case, that there is more than one

consumer.

• This makes methods A and B more complicated.

• A introduces many dependencies.

• In B, not a single device would take ownership,

but multiple devices. Deallocation would happen

after all of them have finished.

All consumers incur

dependencies!

1026.02.2016

Basic Example 2: Two consumers

• The most basic example: Two components on the same node:

• Probably, this is the most frequent case: Most data transport will be between the individual processing devices

processing one timeframe, and these will reside on the same EPN node.

• Device 1 produces its output data, which is used by device 2.

• If device 1 allocates the buffer for its output data, then there are three possibilities:

• A) Device 1 has to wait with the deallocation, until all consumers are finished. [Complicated]

• B) The consumers take ownership of the buffer and handles the deallocation. [ Shared Buffer]

• C) The data must be copied. [We want to avoid this]

Node 1

Proces

-sing

Device

1

Proces

-sing

Device

2a

Proces

-sing

Device

2b

• There is also the case, that there is more than one

consumer.

• This makes methods A and B more complicated.

• A introduces many dependencies.

• In B, not a single device would take ownership,

but multiple devices. Deallocation would happen

after all of them have finished.

 This is in principle a shared buffer.

• The situation for a transfer over network is similar.

1126.02.2016

Basic Example 3: With network

• The most basic example: Two components on the same node:

• Device 1 must pass its output data to the network transport layer library (in whatever form).  Buffer

deallocation must only happen after the network transfer.

• If device 1 allocates the buffer for its output data, then there are three possibilities:

• A) Device 1 has to wait with the deallocation, until all consumers are finished. [Complicated]

• B) The consumers take ownership of the buffer and handles the deallocation. [ Shared Buffer]

• C) The data must be copied. [We want to avoid this]

Node 1

Proces

-sing

Device

1

Network

Layer

Node 2

Proces

-sing

Device

2

Network

Layer

1226.02.2016

Basic Example 3: With network

• The most basic example: Two components on the same node:

• Device 1 must pass its output data to the network transport layer library (in whatever form).  Buffer

deallocation must only happen after the network transfer.

• Some networks need registered memory. A device-1-allocated buffer that is freed, must be re-registered!

• If device 1 allocates the buffer for its output data, then there are three possibilities:

• A) Device 1 has to wait with the deallocation, until all consumers are finished. [Complicated]

• B) The consumers take ownership of the buffer and handles the deallocation. [ Shared Buffer]

• C) The data must be copied. [We want to avoid this]

Node 1

Proces

-sing

Device

1

Network

Layer

Node 2

Proces

-sing

Device

2

Network

Layer

• It might be better to have

persistent buffers, to

avoid re-registering.

• It might be more efficient,

if this is allocated by the

transport or framework

layer.

1326.02.2016

A shared buffer meets all requirements:

• Buffers should be shared, such that all processes can access them.

• Shared buffers can be registered for GPU-accelerators, Network Interface Cards, and Read Out FPGA Cards.

• Every combination of subscribers is possible.

• Buffers are persistent  No need to reregister buffers.

• Such a shared buffer can directly be used for the CRU readout, i.e. as ring-buffer, etc.

• Buffer management should not be done in the user code in the devices!

Node 1

Proces

-sing

Device

1

Network

Layer

Node 2

Proces

-sing

Device

4

Network

Layer

Proces

-sing

Device

2

Shared

Buffer

Shared

Buffer

Shared

Buffer

Proces

-sing

Device

3
…

1426.02.2016

A Framework layer

• We need another layer between the network transport and the processing devices with user code.

• “Framework” is a work-name  should be replayed by something reasonable!

• The framework layer should provide shared buffers to the network, GPU, CRU, and processing devices.

• There must be the possibility to use DMA-registered memory for GPUs and the network – if hardware supports it.

 The framework layer must provide the necessary interfaces!

– These interfaces must provide serialization / deserialization capabilities.

Node 1 Node 2

Network Layer

Proces

-sing

Device

2
Shared

Buffers

Shared

Buffers

Proces

-sing

Device

3

Proces

-sing

Device

4

Proces

-sing

Device

1

Framework LayerFramework Layer

1526.02.2016

A Framework layer

• We need another layer between the network transport and the processing devices with user code.

• “Framework” is a work-name  should be replayed by something reasonable!

• The framework layer should provide shared buffers to the network, GPU, CRU, and processing devices.

• There must be the possibility to use DMA-registered memory for GPUs and the network – if hardware supports it.

 The framework layer must provide the necessary interfaces!

– These interfaces must provide serialization / deserialization capabilities.

Node 1 Node 2

Network Layer

Proces

-sing

Device

2
Shared

Buffers

Shared

Buffers

Proces

-sing

Device

3

Proces

-sing

Device

4

Proces

-sing

Device

1

Framework LayerFramework Layer

This is

essentially

FairRoot / ALFA

But may be with

some additional

layers:

- serialization

- iterators

- light o2 layer

Essentially FairRoot devices, perhaps with slightly different interface.

1626.02.2016

Conclusion from the examples

• We should foresee that all messages can reside in shared memory.

• This will allow us zero-copy message sending in any case.

• It depends on the underlying transport layer, whether the transfer is really zero-copy in any case, but:

• We should define an interface that enables zero-copy.

• We should not limit ourselves here for the future.

• The shared memory usage should be abstracted / hidden in the message-queuing API for the user.

26.02.2016

1826.02.2016

The Interface

• The framework must provide two interfaces:

• Input data for processing devices:

– Very simple: just a pointer inside the shared buffer and the size of the data.

• Output data for processing devices:

– Output data must go to shared buffers, but there will be multiple output methods:

1. Ideal: The framework provides an output buffer, the device fills the buffer, and tells how many bytes are written.

1926.02.2016

The Interface

• The framework must provide two interfaces:

• Input data for processing devices:

– Very simple: just a pointer inside the shared buffer and the size of the data.

• Output data for processing devices:

– Output data must go to shared buffers, but there will be multiple output methods:

1. Ideal: The framework provides an output buffer, the device fills the buffer, and tells how many bytes are written.

• The above is unfortunately insufficient in some cases:

• The device might output an object, that needs to be serialized.

– Serialization should happen directly into the shared output buffer.

– This serialization should happen in the framework not in the user code.

– Serialization must also be taken into account for data input.

• The device could have the output data in its own memory. (This should be avoided, but there are use cases.)

– In this case, passing the buffer might be better than copying manually, and it simplifies the code.

• There might be multiple input / output buffers.

2026.02.2016

The Interface

• The framework must provide two interfaces:

• Input data for processing devices:

1. Very simple: just a pointer inside the shared buffer and the size of the data.

2. Alternatively: the shared buffer contains an object which is deserialized and then passed to the device.

• Output data for processing devices:

– Output data must go to shared buffers, but there will be multiple output methods:

1. Ideal: The framework provides an output buffer, the device fills the buffer, and tells how many bytes are written.

2. If the device sends an object: It provides object and object type and the framework serializes in a shared buffer.

3. Should be avoided if possible: The device returns a pointer to a data buffer and the data size.

• The interface must support multiple input / output buffers!

2126.02.2016

The Interface

• The framework must provide two interfaces:

• Input data for processing devices:

1. Very simple: just a pointer inside the shared buffer and the size of the data.

2. Alternatively: the shared buffer contains an object which is deserialized and then passed to the device.

• Output data for processing devices:

– Output data must go to shared buffers, but there will be multiple output methods:

1. Ideal: The framework provides an output buffer, the device fills the buffer, and tells how many bytes are written.

2. If the device sends an object: It provides object and object type and the framework serializes in a shared buffer.

3. Should be avoided if possible: The device returns a pointer to a data buffer and the data size.

• The interface must support multiple input / output buffers!

• In summary, the message sending will be more efficient, when the memory is allocated by the framework,

not by the user.

• This works for flat buffers.

• We try to directly serialize into such shared buffers.

• Method 3 is only a fallback for compatibility reasons.

2226.02.2016

Interface for receiving messages

• We use a simple iterator concept to loop over the messages.

• The iterator provides us with a pointer to the payload.

• This can be a pointer to a flat data buffer (array / struct).

• Or this points to an object.

– This object will be automatically deserialized by the framework.

dataPtr = frame->GetPayload(); //For a flat data buffer

dataObj = frame->GetPayload(); //For a serialized object

Frame

Header

(Plain Data Flag)

Payload

dataPtr
Frame

Header

(Serialized Flag)

Payload

objPtr

Deserialized

Payload

automatic deserialization

2326.02.2016

Interface for sending messages of type 1

• This is the default method to send flat data (struct / array).

• The buffer is allocated by the framework, not by the user (can be shared memory).

• The user fills the buffer.

• When finished, the user tells the framework how much data was written to the buffer.

• Then, the message can be sent.

• It is better to define the message size after the buffer was filled.

• The final size might not be known in advance.

• For the allocation, a maximum size is assumed.

frame = Framework.CreateFrame();

outputBuffer = frame.AllocateBuffer(MaxSize);

payloadSize = FillOutput(outputBuffer); //Internal function to fill the output in the buffer, returns size

frame.SetSize(payloadSize);

message.AddFrame(frame);

message.Send();

2426.02.2016

Interface for sending messages of type 2

• This is the method to send serializable objects.

• This should not depend on the serialization method.

• The framework transparently serializes the object into a shared buffer.

• Then, the message can be sent.

• It might be that the serialization library does not allow to serialize into an existing buffer.

• Again, this is treated by the framework transparently.

• The buffer can either be copied to a shared buffer after serialization, or this can be handled otherwise.

TH1F histogram;

…

frame = Framework.CreateFrame();

frame.SerializeObject(SERIALIZE_TYPE_TOBJECT, histogram);

message.AddFrame(frame);

message.Send();

2526.02.2016

Interface for sending messages of type 3

• This method exists only for compatibility.

• It should be avoided if possible, as this can incur additional copies.

• We might have the situation, that the user code wants to ship an existing buffer.

• For instance, a foreign serialization library might serialize into its own buffer.

• It should now be up to the framework to decide whether the data is copied to a shared buffer or sent directly.

• Thus, this is identical to messages of type 2, except that there is no serialization.

• We could define this as SERIALIZE_TYPE_FLAT or SERIALIZE_TYPE_PLAIN.

• Then we can use the same method.

void* myBuffer = malloc(messageSize);

...

frame = Framework.CreateFrame();

frame.SerializeObject(SERIALIZE_TYPE_PLAIN, myBuffer, payloadSize);

message.AddFrame(frame);

message.Send();

2626.02.2016

Interface Example Bottom Line

• For the user, it does not matter which layer provides which part of the interface.

• There will probably anyway be some kind of serialization layer.

• Whenenver it makes sense (for general purpose), the functionality should go to FairRoot / Alfa.

• The rest will go to a custom light O2 layer.

• The important point is:

• The message-queuing interface, which we define now / soon, must allow for all the features presented.

• Otherwise, we might limit ourselves in the future.

26.02.2016

2826.02.2016

One implementation idea

• One framework / transport process per compute node.

• This process allocated anonymous shared SysV / POSIX buffers.

• These buffers are registered for the network hardware via the transport layer.

• The process forks multiple times, once per processing device on that node.

• This decreases startup time.

• Common libraries are only loaded once.

• The (original) framework / transport process communicates with the worker processing processes via shared

memory.

• Data exchange happens in these shared memory segments in the way illustrated on the previous slides.

• If one processing process dies, the framework and transport are unaffected.

• Processing process can be restarted (forked again) easily.

• This is just one idea out of my mind from a recent project.

• There are plenty of other ways to do things.

• But perhaps this can help.

