] ' FIAS Frankfurt Institute
. @B N for Advanced Studies

Buffer Allocation for Shared Buffers
without Copying

David Rohr, drohr@cern.ch
Frankfurt Institute for Advanced Studies
CERN, 26.2.2016

26.02.2016

mailto:drohr@cern.ch

FIAS Frankfurt Institute
@ for Advanced Studiesﬂ

SUMMARY FROM CWG4: DATA
HEADERS

Data-headers W %« o Advanced S 2L

N

« In CWG 4, we foresee multiple input and output data blocks per device.
* The payload of each data block is continuous in memory (and has variable size).

* The payload can be serialized. We support multiple serialization methods. Serialization / Deserialization should be
automatized.

« Plain (non-serialized) data is just one trivial serialization method.
« Deserialization simply returns the plain pointer to the payload.

* Each payload data block has a header.
* The header size is variable.

* Each header begins with a fixed common header structure, and can contain additional stacked headers with
additional header information for this block (e.g. trigger information for data sources of triggered detectors).

* The stacked headers can be serialized objects as well. We want to support the same mechanisms as for the
payload, with the same automation for serialization / deserialization.

* Access over multiple input buffers via iterators (or similar):
+ The device queries an iterator for all payload blocks with a certain data type and data origin (e.g. TPC Raw).

* Viathe iterator, the device gets meta information from the header, and a pointer to the data buffer (for a plain
data buffer), or a pointer to the deserialized object (for a serialized buffer).

* Analogously for additional stacked headers.
26.02.2016 2

FIAS Frankfurt Institute #8

Wh atdoes/th IS/T’ear,n\}?r\ the transport Iaye% for Advanced Studies ' ;L

* The transport layer must transfer an amount of pairs: payload buffers and headers.
* The relation of header to buffer must be maintained.
* The size of each payload buffer and of each header is variable.
* The positions of headers and payload in memory is arbitrary.
* But: each header and each payload on its own is in continuous memory (ongoing discussion in CWG4, but this is the goal):
* The device starts processing only after all input data blocks are available - They must be gathered beforehand.

* The receiving device can select input data depending on the data type / origin in the common part of the header. Data not
matching the selection should not be transferred.

Memory Node 1 Memory Node 2 Header 1
Header 1 Common To the transport layer, the header is
- H—— Part just one chunk of _data.
Stacked The header contains only meta data
Header 2 Header 1 for the payload
Payload 1 Stacked There is no pointer to the real
(Serialized) Pa(ylloa‘)j 2 Header 2 payload! ’
Plain :
* This pointer is different on
Payload 2 5 i d di
(Plain) ayload 1 every compute node and Is
(Serialized) maintained by the framework.

26.02.2016 3

N

Interface Featlire Example Pseudocode % or Advanced Suties A2

 We can use an iterator concept to iterate over input data and stacked headers.
* For instance, we could use STL (see Mikolaj's example later)
« It might be convenient to foresee a method to forward data buffers.

» See below some generic pseudocode:
* Terminology: FRAME: one data buffer plus its header.
MESSAGE: a vector of frames

iter = Framework.GetInputMessagelterator (DATA TYPE RAW, DATA ORIGIN TPC); //PAYLOAD ITERATOR
while (frame = iter—->Next ())

{

stackedHeaderIterator = frame->GetStackedHeaderIterator (HEADER TYPE); //STACKED HEADER ITERATOR
if (stackedHeader = stackedHeaderIterator->Next())
{

if (..) Framework.ForwardFrame (frame) ;

}
dataPtr = frame->GetPayload(); //Returns a pointer to (possibly) deserialized payload

Framework.AppendOutputFrame (..) ;

26.02.2016

FIAS Frankfurt Institute
@ for Advanced Studiesﬁ

— h
Sending Messages /W\I thout Co pying % for Advanced Stcies A3

N

We want a message-queuing based approach.
The approach should be such, that no copies are needed.
* Messages must be passed between the processes on one node.
* And between processes on different nodes.
* Our interface should be such, that we can make use of efficient network DMA transfer offered by the
interconnect.
* We must get data from the CRU FPGA PCle card.

How should this work behind the scenes?

26.02.2016

Ba5|c Exam ple 1]\ %# for Acvanod Staiee A2

~

« The most basic example: Two components on the same node:

* Probably, this is the most frequent case: Most data transport will be between the individual processing devices
processing one timeframe, and these will reside on the same EPN node.

* Device 1 produces its output data, which is used by device 2.

« If device 1 allocates the buffer for its output data, then there are three possibilities:
* A) Device 1 has to wait with the deallocation, until device 2 is finished.
* B) Device 2 takes ownership of the buffer and handles the deallocation.
* C) The data must be copied.

Node 1

Proces Proces

-sing -sing
Device Device
1 2

26.02.2016 7

Ba5|c Exam ple 1]\ %# for Acvanod Staiee A2

~

« The most basic example: Two components on the same node:

* Probably, this is the most frequent case: Most data transport will be between the individual processing devices
processing one timeframe, and these will reside on the same EPN node.

* Device 1 produces its output data, which is used by device 2.

« If device 1 allocates the buffer for its output data, then there are three possibilities:
* A) Device 1 has to wait with the deallocation, until device 2 is finished.
* B) Device 2 takes ownership of the buffer and handles the deallocation.
* () The data must be copied. [We want to avoid this]

Node 1

Proces Proces

-sing -sing
Device Device
1 2

26.02.2016 8

Basi c Ex ampl e 2 TW(; bo nsumers % for Acvanod Staiee A2
T \

« The most basic example: Two components on the same node:

* Probably, this is the most frequent case: Most data transport will be between the individual processing devices
processing one timeframe, and these will reside on the same EPN node.

* Device 1 produces its output data, which is used by device 2.

« If device 1 allocates the buffer for its output data, then there are three possibilities:
- A) Device 1 has to wait with the deallocation, until all consumers are finished.
« B) The consumers take ownership of the buffer and handles the deallocation.
* () The data must be copied. [We want to avoid this]

All consumers incur
dependencies!

Node 1 Proces « Thereis also the case, that there is more than one
-sing consumer.
Device * This makes methods A and B more complicated.
Proces 2a * Aintroduces many dependencies.
-sing * In B, not a single device would take ownership,
Device Pro_ces but multiple devices. Deallocation would happen
1 -Sing after all of them have finished.

Device
2b

26.02.2016 9

Basi c Ex ampl e 2 TW(} Bo nsumers % for Acvanod Staiee A2
/ \

« The most basic example: Two components on the same node:

* Probably, this is the most frequent case: Most data transport will be between the individual processing devices
processing one timeframe, and these will reside on the same EPN node.

* Device 1 produces its output data, which is used by device 2.

« If device 1 allocates the buffer for its output data, then there are three possibilities:
* A) Device 1 has to wait with the deallocation, until all consumers are finished. [Complicated]
* B) The consumers take ownership of the buffer and handles the deallocation. [> Shared Buffer]
* () The data must be copied. [We want to avoid this]

Node 1 Proces « Thereis also the case, that there is more than one
-sing consumer.
Device * This makes methods A and B more complicated.
Proces 2a * Aintroduces many dependencies.
-sing * In B, not a single device would take ownership,
Device Pro_ces but multiple devices. Deallocation would happen
1 -Sing after all of them have finished.
Device - This is in principle a shared buffer.
2b The situation for a transfer over network is similar.

26.02.2016 10

Basic-Example 3: Wi%&\etwork %# for Acvanod Staiee A2

« The most basic example: Two components on the same node:

* Device 1 must pass its output data to the network transport layer library (in whatever form). 2 Buffer
deallocation must only happen after the network transfer.

» If device 1 allocates the buffer for its output data, then there are three possibilities:
* A) Device 1 has to wait with the deallocation, until all consumers are finished. [Complicated]
* B) The consumers take ownership of the buffer and handles the deallocation. [> Shared Buffer]
* () The data must be copied. [We want to avoid this

Node 1

Proces Proces

-sing Network Network -sing
Device Layer Layer Device
1 2

26.02.2016 11

% FIAS Frankfurt Institute #.8
for Advanced Studies <23
« The most basic example: Two components on the same node:
« Device 1 must pass its output data to the network transport layer library (in whatever form). - Buffer
deallocation must only happen after the network transfer.
* Some networks need registered memory. A device-1-allocated buffer that is freed, must be re-registered!
» If device 1 allocates the buffer for its output data, then there are three possibilities:

C) The data must be copied. [We want to avoid thiSt~_
Node 1

* It might be better to have
Proces Proces persistent buffers, to

-sing Network Network -sing avoid re-registering.

: : * It might be more efficient,
Device Layer Layer Device if this is allocated by the

1 2 transport or framework
layer.

26.02.2016 12

@ A shared buffé'r/meg%\qu requirements: (%

FIAS Frankfurt Institute
for Advanced Studies

2

Buffers should be shared, such that all processes can access them.
Shared buffers can be registered for GPU-accelerators, Network Interface Cards, and Read Out FPGA Cards.
Every combination of subscribers is possible.

Buffers are persistent - No need to reregister buffers.

Such a shared buffer can directly be used for the CRU readout, i.e. as ring-buffer, etc.

Buffer management should not be done in the user code in the devices!

Node 1
Network
Layer

Proces
. | Shared
-Sing Buffer LIS

1 Device
5

26.02.2016

Node 2
Network

Buffer -sing

Proces Ep— Devi
i > evice
’
Device
3

13

A Fram ework Iayer | \ 1% for Advanced S A5
/

« We need another layer between the network transport and the processing devices with user code.
* “Framework” is a work-name - should be replayed by something reasonable!
« The framework layer should provide shared buffers to the network, GPU, CRU, and processing devices.
* There must be the possibility to use DMA-registered memory for GPUs and the network — if hardware supports it.
- The framework layer must provide the necessary interfaces!
— These interfaces must provide serialization / deserialization capabilities.

Proces Proces Proces Proces
-sing -sing -sing -sing

Device Device Device Device
1 Buffers 2 3 Buffers 4

Framework Layer Framework Layer

Network Layer

14

FIAS Frankfurt Insti
A Fram e)/ve rk Iayer I/\ \ 1% o Advanced S 2L
« We need another layer between the network transport and the processing devices with user code.

* “Framework” is a work-name - should be replayed by something reasonable!
« The framework layer should provide shared buffers to the network, GPU, CRU, and processing devices.
* There must be the possibility to use DMA-registered memory for GPUs and the network — if hardware supports it.

- The framework layer must provide the necessary interfaces!
— These interfaces must provide serialization / deserialization capabilities.

Essentially FairRoot devices, perhaps with slightly different interface.

This is
essentially
FairRoot / ALFA

Proces Proces Proces Proces But may be with
sing -sing -sing -sing some additional

Device Device Device Device layers:
1 Buffers 2 3 Buffers 4 - serialization
Framework Layer Framework Layer - iterators
- light 02 layer

Network Layer

3
& Conclusionfrom th g\e%am ples %« fo Advanced Studog A2

N

We should foresee that all messages can reside in shared memory.

This will allow us zero-copy message sending in any case.

It depends on the underlying transport layer, whether the transfer is really zero-copy in any case, but:
We should define an interface that enables zero-copy.
We should not limit ourselves here for the future.

The shared memory usage should be abstracted / hidden in the message-queuing API for the user.

26.02.2016 16

FIAS Frankfurt Institute
@ for Advanced Studiesﬁ

FIAS Frankfurt Institute -8
for Advanced Studies <3

« The framework must provide two interfaces:
* Input data for processing devices:

— Very simple: just a pointer inside the shared buffer and the size of the data.

» Output data for processing devices:
— Output data must go to shared buffers, but there will be multiple output methods:
1. Ideal: The framework provides an output buffer, the device fills the buffer, and tells how many bytes are written.

26.02.2016 18

& Thenterface % Bp i 9
'f;; = : Sl

The framework must provide two interfaces:

Input data for processing devices:
— Very simple: just a pointer inside the shared buffer and the size of the data.

Output data for processing devices:
— Output data must go to shared buffers, but there will be multiple output methods:
1. Ideal: The framework provides an output buffer, the device fills the buffer, and tells how many bytes are written.

The above is unfortunately insufficient in some cases:

The device might output an object, that needs to be serialized.

— Serialization should happen directly into the shared output buffer.

— This serialization should happen in the framework not in the user code.

— Serialization must also be taken into account for data input.

The device could have the output data in its own memory. (This should be avoided, but there are use cases.)
—In this case, passing the buffer might be better than copying manually, and it simplifies the code.

There might be multiple input / output buffers.

26.02.2016 19

.//

The Interface |] _ %# o A e

« The framework must provide two interfaces:

* Input data for processing devices:
1. Very simple: just a pointer inside the shared buffer and the size of the data.
2. Alternatively: the shared buffer contains an object which is deserialized and then passed to the device.

* Output data for processing devices:
— Output data must go to shared buffers, but there will be multiple output methods:
1. Ideal: The framework provides an output buffer, the device fills the buffer, and tells how many bytes are written.
2. i the device sends an object: It provides object and object type and the framework serializes in a shared buffer.
3. Should be avoided if possible: The device returns a pointer to a data buffer and the data size.

« The interface must support multiple input / output buffers!

26.02.2016 20

The Interface | /\] ﬁ\ % for Advanced Stcies A3

« The framework must provide two interfaces:

* Input data for processing devices:
1. Very simple: just a pointer inside the shared buffer and the size of the data.
2. Alternatively: the shared buffer contains an object which is deserialized and then passed to the device.

* Output data for processing devices:
— Output data must go to shared buffers, but there will be multiple output methods:
1. Ideal: The framework provides an output buffer, the device fills the buffer, and tells how many bytes are written.
2. i the device sends an object: It provides object and object type and the framework serializes in a shared buffer.
3. Should be avoided if possible: The device returns a pointer to a data buffer and the data size.

« The interface must support multiple input / output buffers!

 In summary, the message sending will be more efficient, when the memory is allocated by the framework,
not by the user.

* This works for flat buffers.
* We try to directly serialize into such shared buffers.
* Method 3 is only a fallback for compatibility reasons.

26.02.2016 21

/
Interface for receivi P T‘nessages % for Advancen ey 2.
| =¥ ‘ .

« We use asimple iterator concept to loop over the messages.
« The iterator provides us with a pointer to the payload.
* This can be a pointer to a flat data buffer (array / struct).

* Or this points to an object.
— This object will be automatically deserialized by the framework.

//For a flat data buffer
//For a serialized object

dataPtr = frame->GetPayload() ;
dataObj = frame->GetPayload();

Frame Frame

dataPtr —

Header
(Plain Data Flag) (Serialized Flag)

Deserialized
Payload Payload Payload

automatic deserme
26.02.2016 22

FIAS Frankfurt Institute 8

- h
& Interface for sending\m\essages of type 1 %fmmcem.es
| = .\ :

 This is the default method to send flat data (struct / array).
The buffer is allocated by the framework, not by the user (can be shared memory).

The user fills the buffer.
When finished, the user tells the framework how much data was written to the buffer.

Then, the message can be sent.

» ltis better to define the message size after the buffer was filled.
The final size might not be known in advance.
For the allocation, a maximum size is assumed.

frame = Framework.CreateFrame () ;

outputBuffer = frame.AllocateBuffer (MaxSize) ;

payloadSize = FillOutput (outputBuffer); //Internal function to fill the output in the buffer, returns size
frame.SetSize (payloadSize) ;

message.AddFrame (frame) ;

message.Send () ;

26.02.2016 23

FIAS Frankfurt Institute 8

- h
& Interface for sending\m\essages of type 2 %fmmcem.es
| = .\ :

« This is the method to send serializable objects.

This should not depend on the serialization method.

The framework transparently serializes the object into a shared buffer.
Then, the message can be sent.

« It might be that the serialization library does not allow to serialize into an existing buffer.

Again, this is treated by the framework transparently.
The buffer can either be copied to a shared buffer after serialization, or this can be handled otherwise.

TH1F histogram;

frame = Framework.CreateFrame (),
frame.SerializeObject (SERIALIZE TYPE TOBJECT, histogram);
message.AddFrame (frame) ;

message.Send () ;

26.02.2016 24

FIAS Frankfurt Institute §-8

- h
Interface for sending\m\essages of type 3 %mdvancedsm

 This method exists only for compatibility.
« It should be avoided if possible, as this can incur additional copies.

* We might have the situation, that the user code wants to ship an existing buffer.
* For instance, a foreign serialization library might serialize into its own buffer.

« It should now be up to the framework to decide whether the data is copied to a shared buffer or sent directly.
* Thus, this is identical to messages of type 2, except that there is no serialization.
* We could define this as SERIALIZE_TYPE_FLAT or SERIALIZE_TYPE_PLAIN.

« Then we can use the same method.

void* myBuffer = malloc (messageSize) ;

frame = Framework.CreateFrame (),
frame.SerializeObject (SERIALIZE TYPE PLAIN, myBuffer, payloadSize);
message.AddFrame (frame) ;

message.Send () ;

26.02.2016 25

3
& Interface Example B/o\tt\om Line %« fo Advanced Studog A2

N

 For the user, it does not matter which layer provides which part of the interface.
* There will probably anyway be some kind of serialization layer.
* Whenenver it makes sense (for general purpose), the functionality should go to FairRoot / Alfa.
* The rest will go to a custom light O2 layer.

« The important point is:

* The message-queuing interface, which we define now / soon, must allow for all the features presented.
* Otherwise, we might limit ourselves in the future.

26.02.2016 26

FIAS Frankfurt Institute
@ for Advanced Studiesﬂ

FIAS Frankfurt Institute §-8

h'
& Oneimplementation {d\Ga %“ Bl e

N

 One framework / transport process per compute node.
* This process allocated anonymous shared SysV / POSIX buffers.
* These buffers are registered for the network hardware via the transport layer.
* The process forks multiple times, once per processing device on that node.
* This decreases startup time.
 Common libraries are only loaded once.

* The (original) framework / transport process communicates with the worker processing processes via shared
memory.

+ Data exchange happens in these shared memory segments in the way illustrated on the previous slides.
» If one processing process dies, the framework and transport are unaffected.
* Processing process can be restarted (forked again) easily.

 _Thisis just one idea out of my mind from a recent project.
There are plenty of other ways to do things.
But perhaps this can help.

26.02.2016 28

