

Omni-Path tests MPI and IPoFabric

Sylvain Chapeland, Adam Wegrzynek · CERN

Hardware

- 16x E5-2680v4 "Broadwell EP"
 - ► 12 cores
 - ► DDR4
- Omni-Path 100Gb interconnect
 - CPU and fabric integration

MPI: Simple "event building"

Software:

- x FLPs send event fragments to y EPNs
 - EPNs used round-robin
 - First fragment of event N+1 sent to EPN i+1 only after all fragments of event N received by EPN i (global synchronization barrier)
 - Event fragment size configurable, normal distribution +/-10% around nominal size
- Implementation using MPI for transport
 - MPI_Send, MPI_Irecv, MPI_Waitall, MPI_Barrier
 - ~200 lines of c++ code
 - Compiled with Intel mpiicpc
- Test protocol: measure per-link and aggregate bandwidth
 - Different number of FLPs/EPNs (X+Y<16)</p>
 - Different event fragment size (100 bytes ... 1 GBytes)
 - Starting mpirun with 1 process per host, e.g. : mpirun -ppn 1 ...

MPI: Observations

- Can easily get close to wire speed: ~92 Gb/s routinely measured
- Very smooth and almost linear scaling operation in all tested configs
 - ► Link sharing handled well, no traffic collision conflicts even in 15-to-1 operation
- Good aggregate transfer when using all hosts
 - ► Up to 592Gb/s for a 9 FLP to 7 EPN config, i.e. 85Gb/s per EPN
 - Despite simple transport code (global sync dead time, no overlapping transfers)
- Optimal fragment size 1-10 MB
 - Usual latency effects limitations for smaller blocks
 - Probably some cache-related effects for larger blocks (intel 'shortcut' from cache to network does not work any more)
- Easy transport coding with MPI

MPI: Event building throughput

MPI: transfer rate

IPoverFabric: Benchmarks

- FairMQ using ZeroMQ (FMQ)
 - bsampler and sink from FairRoot
- Memory pre-allocation (Zero-copy)
 - ► AliceO² FLP and EPN modified devices using FairMQ (AliceO2)
 - Boost::Asio sender and receiver (boost)

IPoverFabric

IPoverFabric: Conclusion

- For block size in the 1-10 MB: Asio and ZMQ able to transfer data at 32-37 Gb/s with 1 core
- For block size in the 50-100 MB: Asio able to transfer data at 25 Gb/s and ZMQ at 13-17 Gb/s with 1 core
- Large overhead due to IPoFabric way better performance with MPI