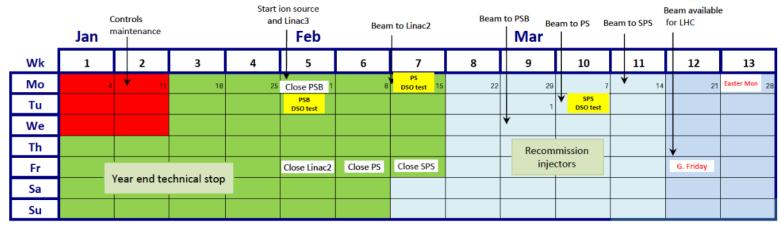

LHC Machine Status RRB

Frédérick Bordry 25th April 2016



YETS (Year End Technical Stop) 2015-2016

Regular maintenance, mandatory tests, problem fixing and unforeseen issues ... not all plain sailing!

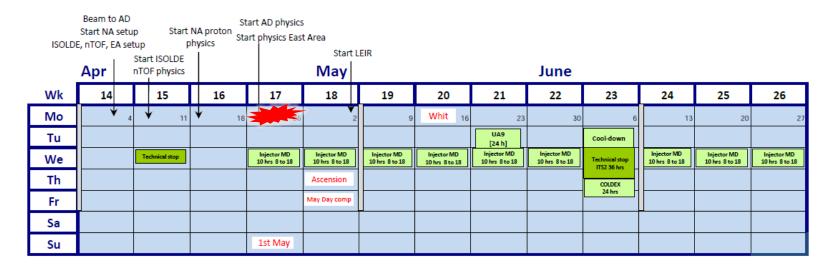
PSB, PS and SPS

LHC

	Jan			Feb				Mar					
Wk	1	2	3	4	5	6	7	8	9	10	11	12	13
Мо	4	11	18	25	1	8	15	22	29	7	14	21	Easter Mon 28
Tu													
We													
Th				Year end te	chnical stop	р				Poweri	ng tests	cout	
Fr								DSO test				G. Friday	
Sa								D30 test				Machine	
Su												Σ S	

Status of injectors

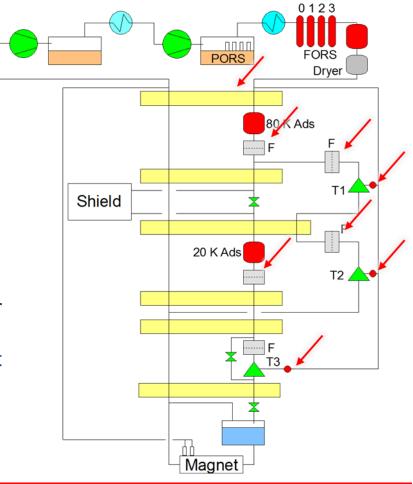
Booster:


- All operational beams available
- Beam to ISOLDE on schedule

PS

- Beam to nTOF on schedule
- Beam to AD and East Area users as foreseen this week
- MTE to SPS for North Area

▶ SPS


- ► LHC 25 ns in good shape, reconditioning after extraction septum exchange
- ▶ Beam to North area users from Friday 22nd April slight delay
- First HiRadmat run of 2016 successfully completed

CMS Cold-Box Contamination 2015

- Breox® (compressor oil) was found on
 - 1. Outlet filter 80K and 20 K adsorbers
 - 2. Inlet filter T1
 - 3. Inlet filter T2
 - 4. Turbine gas bearing inlet filters
- Breox® is thought to diminish the heat exchange surface of the first heat-exchanger.

Normally a cold-box having suffered such a Breox® pollution is stopped to be cleaned. This was however impossible in the CMS case, and the installation was kept alive with regular 80K adsorber and turbine inlet filters regenerations. When judged necessary the turbine filters were exchanged for new ones.

Of the integrated (p-p) luminosity delivered to CMS in 2015, about 73% of the data is taken under nominal field conditions.

Consolidation works performed during YETS 2015-2016

- Replacement the primary oil separator system
- Replacement of the coalescers system
- Replacement of the activated charcoal in warm adsorber
- Replacement of the high pressure piping between the surface compressor station and the underground cold-box
- Chemical cleaning of the cold box circuits
- Replacement the 20 K and 80 K adsorbers
- Repair of liquid nitrogen pre-cooler heat exchanger
- Repair of the damaged cryogenic valve CV273 in the experimental cavern

All works completed and equipment commissioned The cooling down of the CMS magnet is ongoing:

- Started from 165 K (09 April 2016)
- No liquid nitrogen pre-cooler used

Cold box cleaning: USC

350+10+8 grams of Breox

Cold box shunts & taps

Warm-end of cold box modifications

Heat exchanger tapings (taken out)

Cold-end of cold box modifications

Cleaning machine components

Commissioning finished 25 Jan.

Fluid circulation in cct 1 started 25 Jan

Following the drying procedure, the outgassing rate of the cleaning liquid is very low (less then 100 ppm over several days). Most of the contaminated items (O-rings etc.) are replaced

Cryogenics: Oil removal system & adsorbers

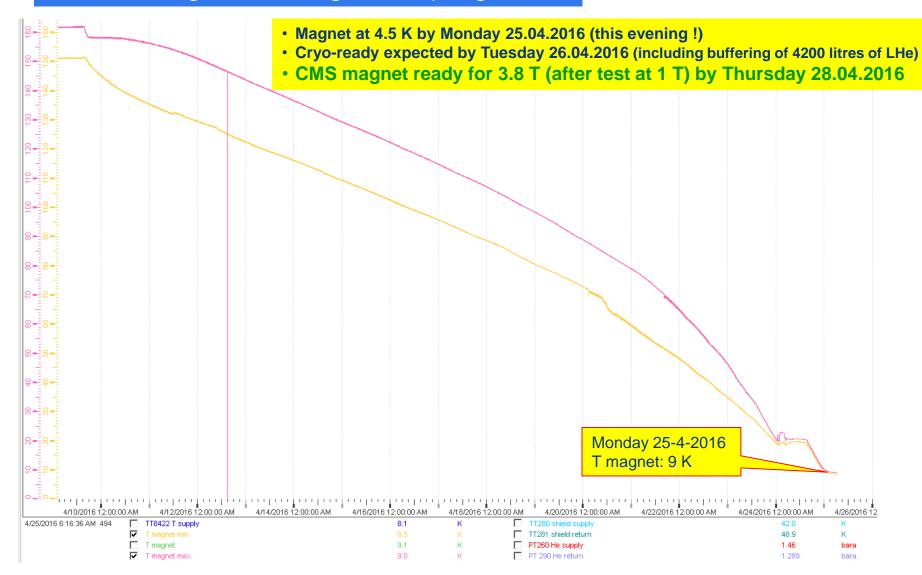
Surface compressor hall

Old Coalescers: removed

New Coalescers:

Old PORS: removed

New PORS pressure tested at A.L. factory



Replacement the primary oil separator and the coalescers system

Fantastic combined works and team spirit between CMS and A&T groups.

CMS Magnet cooling down progress

Proton-Proton Plans for 2016

- ✓ Stable Safe Operations
 - Don't compromise on machine safety!
 - Don't do anything to compromise machine reproducibility
- ✓ Electron Cloud under control
 - Short dedicated scrubbing
 - Continue during intensity ramp-up
- \checkmark 13 TeV, 40 (50) cm β*
 - > Keep an eye on availability
- ✓ Nominal 25ns beam, 2748 bunches, 288 bpi
 - May push later to shorter bunches & BCMS
- ✓ Good Availability
 - Sustained effort to trace faults
 - Keep avoidable interruptions to production running to a minimum
- ✓ Excellent Operational Efficiency
 - Combined ramp/squeeze
 - Work on injection process

Initial beam commissioning ~4 weeks **First Stable Beams** low intensity Scrubbing ~4 days Intensity increase to ~2000 bunches + occasional scrubbing ~3 weeks Bunch number increase close to heat-load limit 25 ns physics ~2700 bunches/beam

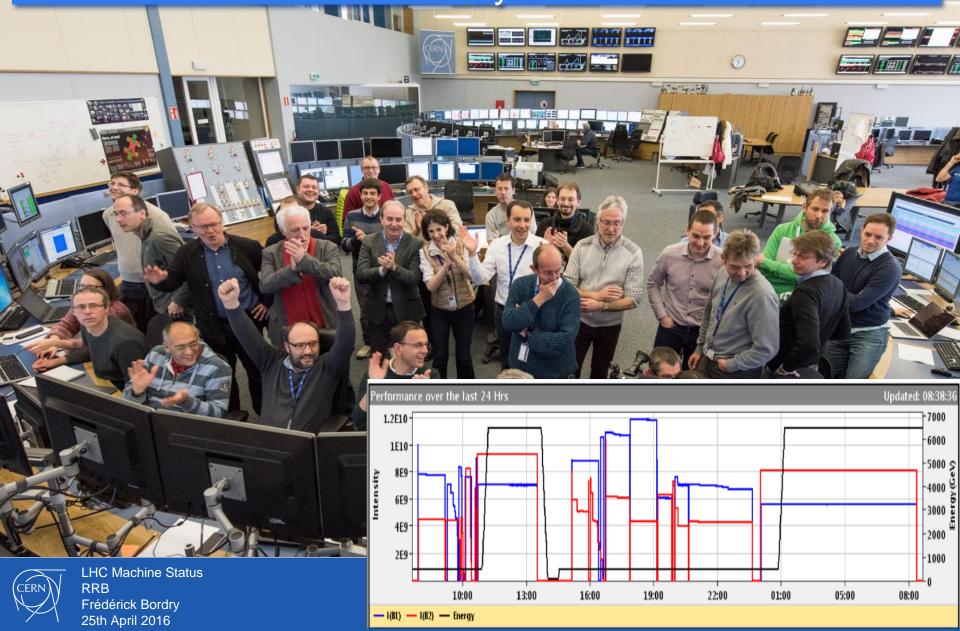
Powering test Status (19th March 2016)

Circuit type	Number of circuits	Completion [%]	Machine G. Friday
RBs	8	100% — only 2 quenches above 6.5 Te\	
RQs	16	100% – no quench	
ITs	8	100%	Montoning application. Currently monitoring: LHC - [1 subscription] # of E Succ Succ Subscription Subscription Subscript
IPQ/IPD	94	100%	1860
600 A	412	100%	6000
120-60 A	1049	100%	1600
Total		100% (8592 successful tests)	0 0000 0000 0000 0000 0000 0000 0000

Mar

11

Powering tests

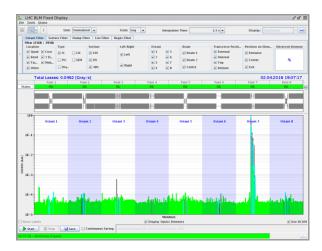

12

13

Main bend circuits:

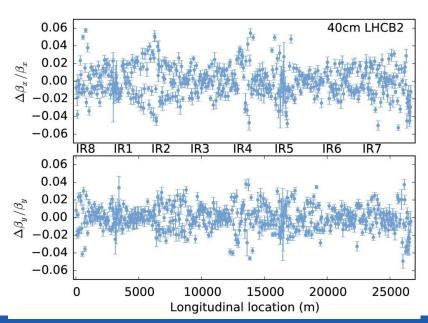
- 6 circuits without quenches up to 6.55 TeV (11080A) and 4h at 6.55 TeV
- Sector 2-3: one quench at 11040 A (6.5 TeV 10980 A) and OK (new magnet)
- Sector 5-6: one quench at 11076 (magnet quenched in 2008 at 10976 A)

First circulating beams in LHC in 2016 on Easter Friday 25th March 2016


Milestones 2016

Friday 22 nd April	First Stable Beams – 3 bunches/beam
Thursday 21st April	72 bunch injection to 444 bunches/beam
Sunday 17 th April	Aperture measurement (collision)
Tuesday 12 th April	Quiet beams
Friday 8 th April	Nominal bunches into collisions
Wednesday 6 th April	Nominal bunch to flat-top
Thursday 31st March	Optics correction at 6.5 TeV (flat-top+squeeze)
Sunday 27 th March	Squeeze to 0.4 m and optics measurements
Saturday 26 th March	First ramp to 6.5 TeV
Friday 25 th March	First beam. RF capture

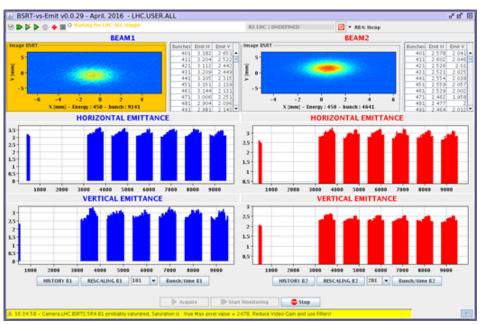
Progress 1


- Combined ramp and squeeze in place
- Optics measured and corrected through cycle
- Aperture measured through cycle
- Collimators set-up through cycle
- Full set of loss maps performed
- RF, transverse dampers, beams dumps, injection and transfer lines, feedback systems fully commissioned
- Machine protection re-commissioned and fully qualified
- ULO measured at 450 GeV
 - in similar orientation to end 2015
 - bump in place throughout cycle
- New injection protection devices (TDIs) look good; barely discernible impedance

Progress: Squeeze to 40 cm

- Optics measured and corrected to unprecedented levels
- Aperture at 40 cm measured carefully: tight as expected but sufficient
- TOTEM and AFP Roman pots commissioned and set-up for insertion during 40 cm operation

Measured beta* in ATLAS and CMS

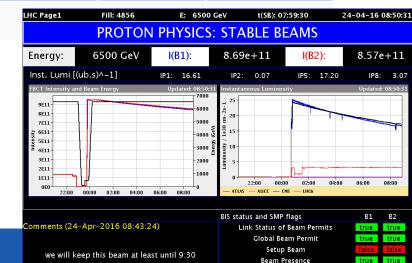

IP	B_{IP}	$\beta_{\rm IP}{\rm err}$	W	w err
ip1b1.X	0.399	0.002	0.047	0.009
ip1b1.Y	0.404	0.001	-0.009	0.009
ip1b2.X	0.396	0.001	0.009	0.011
ip1b2.Y	0.411	0.004	0.072	0.010
ip5b1.X	0.400	0.000	-0.009	0.008
ip5b1.Y	0.403	0.002	-0.028	0.010
ip5b2.X	0.409	0.005	0.070	0.013
ip5b2.Y	0.399	0.002	-0.025	0.011
Averag e	0.403	0.002	0.016	0.010
RMS β-beat in %	<u>1.4</u>			

Impressive level of correction: RMS beta beating ~1.4%

Progress: Initial multi-bunch tests

Initial multi-bunch tests encouraging

- Injection of 444 bunches
- Electron cloud de-conditioning over YETS looks acceptable


LHC pilot physics

Moveable Devices Allowed In

Date	Fill no.	Bunches	Bunches colliding	Peak Iumi cm ⁻² s ⁻¹	Stable beams	Integrated lumi
Sat 23 April	4851	3	2	5.2e30	3h52	64 nb ⁻¹
Sat 23 April	4852	3	2	5.9e30	2h34	49 nb ⁻¹
Sun 24 April	4856	12	8	2.5e31	8h25	0.6 pb ⁻¹
Mon 25 April	4861	12	8	LHC Page1	FIII: 4856 E: 650	00 GeV t(SB): 07:59:30 S: STABLE BEAMS

- Monday 25th: 25 ns injection tests with up to 288 bunches down the lines from the SPS
- Scrubbing thereafter for around 4 days targeting 2000+ bunches with 288 bunches per SPS batch

next: BSRT calibration in ADIUST

AFS: Multi_12b_8_8_8_4bpi_3inj_2500ns

Scrubbing and intensity ramp-up

- ▶ Re-establish 2015: ~2000 bunches conditions during dedicated 4 day run (450 GeV)
- ► Intensity ramp-up (288b) phase 1:
 - below the heat load limit
 - remedial scrubbing as required
 - **▶** 3-12-48/72-288-570-860-1200-1700
 - \sim 7 steps \sim 3 days per step => \sim 3 weeks
- Phase 2: (maximal) scrubbing during Stable Beam

Scrubbing

► ~2000 to 2748

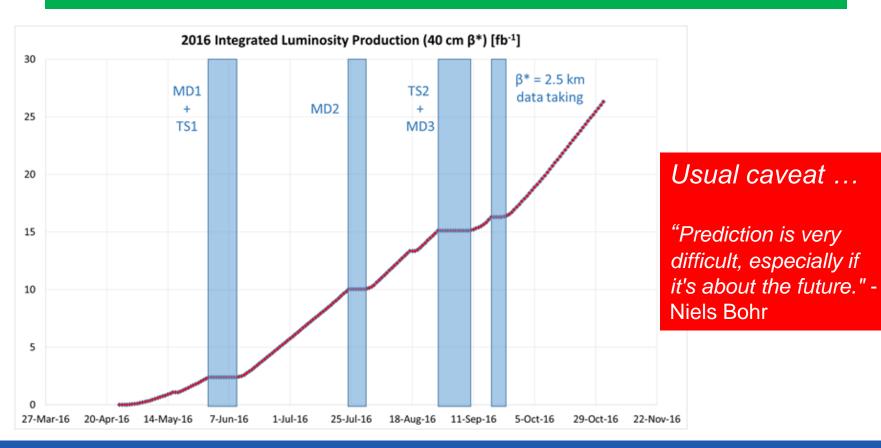
Small increments in number of bunches ("mini-steps") playing on

batch gap

					May							June					
		16		17	18	Ι	19		20		21	22		2 3	24	25	26
		18	3	25		2	9	W	hit	16			30		13	20	27
								\/.	dM			beta* 2.5 k dev.	m				
	_								aivi					TS1			
į	ng		1	,	Ascension												
					May Day comp							MD 1					
	Intensity ramp-up																
				1st May	Sci	ub	bing as requi	red									

LHC schedule 2016

2016: a production year



	July				Aug								
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Mo	4	11	19	25	1	9	15	72	29	5	12	E 19	ж
Tu												2.5 aldin	
We				MD2					TS2	MD 3		dera*	
Th							MD			Jeune G		.8	
Fr							NID.						
Sa				beta* 2.5 km dev.									
Su													

	Oct				Nov		End of run [seed]						
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Mo	3	10	17	24	31	7	14	21	20	5	¥ 12	19	Z.
Tu							lons					Extended year end	
We						TS3	setup				technic	technical stop	
Th								- 1	on run			Lab closed	
Fr					MD 4				(p-Pb)				
Sa													
Su												Xmas	New Year

LHC goal for 2016

Integrated luminosity goal: 2016: ~ 25 fb⁻¹ at 13 TeV c.m

LHC goal for 2016 and for Run 2 and 3

Integrated luminosity goal:

2016: ~ 25 fb⁻¹ at 13 TeV c.m

Run2: ~100 fb⁻¹

Prepare for (or go to) 14 TeV operation

300 fb⁻¹ before LS3

www.cern.ch