

A prototype of a directional detector for non-baryonic dark matter search: MIMAC (Micro-TPC Matrix of Chambers)

Cyril Grignon

LPSC Grenoble Université Joseph Fourier - CNRS/IN2P3

MPGD 2009, 12-15 June 2009, Kolympari

Outline

- Dark matter and Directional detection
- The MIMAC project and the μ TPC
- Measurement of the Energy
- The pixellized micromegas and the MIMAC electronic
- Reconstruction of the Track in 3D

Dark Matter

Dark Matter is present at all scales in the universe ...

Direct detection through the scattering on a nuclei: 10-50 keV nuclear recoil

Main challenge: separate WIMP signal from background radioactivity (α,β,γ,μ,n ..)

Dark Matter Directional Detection

<u>Why</u>? to have a robust signature of WIMP detection

Ex: MIMAC, DRIFT, DM-TPC ...

Cyril Grignon

The micromegas µTPC prototype

Bulk micromegas with pixellized anode (x,y): 3 cm x 3 cm

The micromegas offers: High $\begin{cases} energy \\ time \\ spatial \end{cases}$ resolution Secoil track reconstruction Senergy threshold 1 keV Selectron/nuclei discrimination

Collaboration : CEA Saclay

Measured Energy \neq **E**_{recoil}

I. Giomataris et al., NIM. A 560 (2006)

Energy measurement : Quenching factor

Recoil energy is shared among :
Scintillation
Heat
ionization

Ionization Quenching factor defined as

$$Q = \frac{E_{ionization}}{E_{recoil}}$$

•Helium Quenching factor is predicted by Lindhard theory

... but need to be measured for mixtures !

• Key point for Dark Matter to compute recoil energy

QF measurement : experimental set-up

Charge preamplifier + Shaper + ADC + PC

ECR ion source (designed and calibrated @ LPSC) Low energy ion source 1 to 50 keV Possibility to produce p, ³He, ⁴He, ¹⁹F Bulk calibrated with radioactive sources or fluorescence

Micromegas gain and energy resolution

Enough gain for given electronic threshold

Typical working gain : 10 000

Resolution of 15.3 % @ 6.4 keV

QF measurement : low energy ions

⁴He from 1 keV to 50 keV

QF measurement : results

Cyril Grignon

Pixellized Micromegas prototype 3 x 3 cm²

96 strips for X and 96 strips for Y

MIMAC Chip designed at LPSC

Self-triggered electronic for Anode sampling @ 40 MHz

First version running, next version under design (64 channels ASIC)

Electronic board and DAQ

The X and Y-FPGA process, concentrate and time sort data for each side

The **acquisition station** extracts the data event by event and store them on disk

Ethernet microcontroller forwards the data via a TCP socket server to the

acquisition station

Electronic board outside the gas vessel

electromagnetic shielding for electronic board

... to reality

From CAD view ...

3D Track reconstruction

3D Track : 5.5 MeV α from ^{222}Rn

Go through the detection volume Only a part of the total alpha track

Measurement of electron drift velocity

3D Track : (5.9 keV electron from ⁵⁵Fe

Amande neutron source : IRSN facility @ Cadarache

prototype with pixellized bulk micromegas

Simple to use

Recoil from 144 keV neutrons

Possible to reconstruct recoils of p @ low pressure in methane and isobutane

Cyril Grignon

DATA

Recoil from 144 keV neutrons

MIMAC: conclusions and outlooks

- Precise measurement of the energy recoil in He down to 1 keV
- Development of a dedicated ASIC to reconstruct a 3D track of a recoil
- Alpha tracks used to measure drift velocity
- First tracks of a 5.9 keV electron at low pressure
- Reconstruction of 144 keV recoils

Discrimination recoil / electrons possible

Next Steps

- Bulk micromegas with a higher gap (256 μ m) for low pressure (< 300 mbar)
- New ASIC in October 2009
- New pixellized micromegas (10 x 10 cm²) end of 2009
- 4 modules (20 x 20 cm²) at the end of 2010

Long term: dark matter astronomy

The MIMAC collaboration

LPSC (Grenoble) :

G. Bernard, J. Billard, C. Grignon, C. Koumeir, F. Mayet, D. Santos

Technical Coordination : O. Guillaudin

- Electronics : G. Bosson, J-P. Richer
- Gas detector : A. Pellisier
- Data Acquisition: O. Bourrion
- Mechanical Structure : Ch. Fourel
- Ion source : T. Lamy, P. Sole

CEA-IRFU (Saclay): I. Giomataris, P. Colas, E. Ferrer

IRSN (Cadarache): L. Lebreton, A. Allaoua

Backup slides

QF measurement : calibration

Calibration with Helium / Isobutane mixture

Classical radioactive source :

- 55Fe (5.97 keV)

Helium transparency for X > 2 keV

- High flux source (multicell detector!)

- Production of fluorescence X-Rays on different targets with a Miniature X-Ray Generator (inside chamber)
 - Peak X-ray flux equivalent to a 2 mCi source (during few sec)
 - Target and X-ray
 - AI : 1.486 keV
 - Ti : 4.504 keV
 - Fe : 6.4 keV
 - Cu : 8.1 keV

Multi-Target Spectrum

Ion source calibration with Si₃N₄ membrane time of flight under vacuum

- •Neutral atom after the Silicon nitride membrane
- •Method : measuring time of flight for 2 positions of the STOP channeltron

Connectors and contacts

Dectector back side

2D readout circuit and pillar

can be readout from the 2 ends of the circuit

Inside view of the detector

Inside field cage

From CAD view ...

... to reality

Measured tracks of alpha particle

Simulation of track reconstruction

- Test of capability of the DAQ and reconstruction algorithm to reconstruct tracks
- Assumed linear trajectory for recoil tracks
- V = 26 μ m/ns, pitch of 400 microns, D = 200 μ m/cm¹/₂
- for track length between 1 mm to 1 cm

Promising angular resolution for directional detection