X-ray polarimetry in Xenon gas filled detectors

G.S. Botte¹, <u>L.P.M.M. Carita¹</u>, A.L. Gouvêa², T.H.V.T. Dias¹, J.F.C.A. Veloso², P.J.B.M. Rachinhas¹, R.M. Curado da Silva¹, F.P. Santos¹, L.M.N. Távora¹, C.A.N. Conde¹ and A.D. Stauffer³

¹ Departamento de Física, Universidade de Coimbra, Portugal
² Departamento de Física, Universidade de Aveiro, Portugal
³ Physics and Astronomy Department, York University, Toronto, Canada

MPGD2009 - 12-15 June 2009, Crete, Greece

Motivation

Photoelectric effect is very sensitive to polarization since photoelectron angular distributions become preferentially aligned with the polarization vector;

> unpolarized X-rays:
$$\frac{d\sigma}{d\Omega} = \frac{\sigma}{4\pi} \left[1 - \frac{1}{2}\beta P_2(\cos \theta) + (\delta + \frac{1}{2}\gamma \sin^2 \theta) \cos \theta \right]$$

linearly polarized:
$$\frac{d\sigma}{d\Omega} = \frac{\sigma}{4\pi} \Big[1 + \beta P_2(\cos\theta) + (\delta + \gamma \cos^2\theta) \sin\theta \cos\varphi \Big]$$

including 1st order non-dipole corrections δ and γ to the dipole approximation

($\underline{\theta}$ is the polar angle relative to the x-ray propagation direction, θ and φ are the polar and azimuthal angles relative to the polarization direction, β is the dipole asymmetry parameter and P₂ is the 2nd Legendre polynomial)

Derevianko *et. al.,* At.Dat.Nucl.Dat. Tables 73 (1999) 153 Trzhaskovskaya *et. al.,* At.Dat.Nucl.Dat. Tables 92 (2006) 245

Motivation

The profiles of the electron clouds produced by photoionization events can be used to probe the polarization;

<u>Our Goal</u>: Observation of the polarization-induced anisotropy in the profiles of the electron clouds when polarized X-rays (~5-20 keV) are absorbed in xenon

<u>Why?</u>: great interest for x-ray astronomy & astrophysics

Polarization as a new observational parameter improves the characterization of astronomical x-ray emission sources

Monte Carlo simulation

Experimental measurements

- Polarized X-ray source
- Gridded-Microstrip Gas Chamber (G-MSGC)
- Micro-Hole & Strip Plate (MHSP)
- **Conclusions**

Monte Carlo simulation: Model

Monte Carlo simulation: Results

incidence \perp XY plane, polarization || X-axis

Monte Carlo simulation: Results

incidence \perp XY plane, polarization || X-axis

Monte Carlo simulation: Results

Xe @ 1 atm (Xe *E(K edge)*=34.6 keV)

incidence \perp XY plane, polarization || X-axis

Polarized X-ray source

Polarized X-rays are obtained by Bragg reflection at 45° from unpolarized radiation generated with an X-ray tube

Linearly-polarized Bragg-reflection lines characteristic of graphite at E_x =5.22, 7.84, 10.45, 13.04, 15.66, 18.25, 20.86 keV

Gridded-MicroStrip Gas Chamber

G-MSGC: Performance

Anode voltage (V)	
-------------------	--

Gas	Microstrip	Best R (%)	V _{anode} (V)	V _{grid} (V)	М
Xe	G-MSGC	13.4	400	100	1150
	Standard	15.6	480	-	560
P10	G-MSGC	12.6	415	150	590
		12.6	100		400

G-MSGC: Experimental Setup

Polarization direction is //X-axis

Rectangular G-MSP orientations: polarization vector is

- i) parallel to the MSP length or
- ii) parallel to the MSP width

G-MSP active area: 1.5 cm ×1 cm

G-MSGC: Experimental Results

Energy spectrum, showing graphite x-ray lines

\Delta is the observed shift of each peak to lower energies when the rectangular G-MSP orientation is changed from *//* to \perp to the polarization vector

Micro-Hole & Strip Plate

Veloso et al., Rev.Sci.Instrum. 71 (2000) 2371

2D-Micro-Hole & Strip Plate

X-ray imaging using the principle of resistive charge division

2D-imaging capabilit			
Position resolution - x dimension	130 µm (~300 µm FWHM)	Natal da Luz <i>et. al</i> .,	
Position resolution - y dimension	250 µm (~600 µm FWHM)	IEEE TNS-55(4) (2008) 234	
Field of view	2.5 cm x 2.5 cm		

2D-MHSP: Experimental Results

Energy spectrum, showing graphite x-ray lines

2D-MHSP: Experimental Results

incidence \perp XY plane, polarization || Y-axis

2D–MHSP: Experimental Results

from the X-ray tube Mo-anode

Future work

Photoelectric $\sigma_{\rm P}$, Rayleigh $\sigma_{\rm R}$ and Compton $\sigma_{\rm C}$ cross-sections for X-rays and corresponding absorption lengths-L in Xe at 760 Torr.

Conde, X-ray Spectrometry: Recent Technological Advances, John Wiley&Sons, 2004, ch.4

Conclusions

- Monte Carlo electron clouds reproduce the anisotropy of the photoelectron emission.
- □ <u>G-MSGC</u>: the shift observed in the peaks of the energy spectrum measured with a Gridded Microstrip Gas Chamber provide clear, albeit indirect, experimental evidence of the alignment of electron cloud profiles in Xe with x-ray polarization direction.
- <u>2D-MHSP</u>: The images registered with a 2D position-sensitive detector based on the new Micro-Hole & Strip Plate structure further reinforce that evidence and confirm that a photoelectric polarimeter based on Micro Pattern Gas Chambers is a viable option for X-ray polarimetry.