Simulating tracking detectors that rely
on 1onisation

brief history of stmulation
principles of operation
simulation methods



Aerial photo of the LHC region




semi-conductor tracking




Example: history of pu=-tracking

» Why look for u* ?
» major constituent of cosmic radiation in the atmosphere;
» leptons are produced in early stages of the interactions;
» leptons occur as decay products of sought-for particles;
» penetrating, charged: easy to identify.

» Difficulties with u*:
» large background from 1m* decays.

» Some examples from history:
» 1937: one of the discovery experiments;

» 1989: an SPS fixed target experiment;
» 2009: LHC experiments.



Cosmic radiation

» Outside the atmosphere, cosmic
radiation consists of protons and
light nuclei.

» On entering the atmosphere,
» p+air — *, ¢ (mostly)

ot o uty (cTt ~7.8 m),
» - yy (prompt) |
>yt etvy (cT ~ 660 m) P i _,-""'

» We're irradiated by about |
200 ut/sec.m? ! , Elg 5




Gelger counter

» Detects radiation by discharge.

» Can count « and B particles (at low rates).

» No tracking capability.
» First models in 1908 by Hans Geiger, further

e

Hans Geiger |
(1882-1945)

Walther Miiller
(1905-1979)

developed from 1928 with Walther Miiller.

TR

e 4

A Geiger-Muller counter built in 1939 and
used in the 1947-1950 for cosmic ray studies
in balloons and on board B29 aircraft by
Robert Millikan et al.

Made of copper, 30 cm long



Layout u= experiment 1937

O
> Trigger counters
-0 O
- /0 Z <« Lead absorber ' s
. - :

O <« Trigger counter W track
- 20
5 bl . Cloud chambe?, f1.lter, .
Crr 0.35 T magnetic field

OQO <— Veto counter

Track “B”



Findings u* experiment 1937

» Collected 4000 events, made 1000 photos, only 2 were
singled out ... “A” 1s most likely a proton, but from the
curvature of track “B” 1s a negatively charged particle.

» Jonisation density 6 X density of “usual thin tracks”,

i.e. high energy charged particles.
» Assuming ionisation oc 1/v? + using the curvature, the
estimated mass was 130 £ 25 % m_or 66 + 17 MeV

(cf. PDG 2008 value: 105.658367 £ 0.000004 MeV).

P Ref: J. C. Street and E. C. Stevenson, Phys. Rev 52 (1937) 1003.



[Four Curies: Pierre, Marie, Irene and oy
Pierre's father, around 1904 at the BIPM] \_'._ ¢

» Electrically induced (!) gas discharge had
been demonstrated as early as 1706
Francis Hauksbee (the Elder).

® Jonisation as a detection principle was recognised early:

Becquerel discovered in 1896 the special radiating properties of
uranium and its compounds. Uranium emits very weak rays which

leave an impression on photographic plates. These rays pass through
black paper and metals; they make air electrically conductive.
[Pierre Curie, Nobel Lecture, June 6™ 1905]

» Non-relativistic model of ionisation density was used
(Bethe's relativistic formula dates back to 1932).
» These were not yet the days of detector simulation.



Helios/I (1989)

» The experiment recorded:
» y  1Ar calorimeter + crystals
» e* 1Ar calorimeter + TRD
» u* tracking chambers
» v nearly 47t calorimetry

» Data statistics:
» 150 days with 10° p every 14 sec, 5 10" p effective,
» only 107 collisions recorded on tape.
» of these, only of order 10* events were finally used.



Helios/I layout (1989)
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UCAL MAGCAL ULAC UCAL Lead curtain Muon magnet Iron wall
BOX WALL EM HD BEAM VETO

VII

) Al

A

DC1 DCZ2 TRD DC3 Sc. pad PCO PC1 PC2 PC3 PC4 PCS PC6 H3 H2
Electron spectrometer Muon spectrometer

Om 5Sm 10 m 15 m




Helios/I tracking (1989) u

» Three kinds of devices:

y—axis [em]
[+]
03]

» silicon strips near the vertex; * ,,|

» innovative drift chambers ar
with CO, 80 % Ar20 %,  2node €
150-200 pm resolution; 28l

» large areca multi-wire

proportional chambers far

downstream. ~ x—wvig ]



Events / 20 MeV

Helios/I p*u findings (1989)
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Simulation Helios/I (1989)

» Detector simulation was commonplace in 1989, Geant was
widely used but didn't simulate gas-based devices.
» George Erskine had published from the 1970s a series of

key papers on the electrostatics 1n gas-based detectors.

» The drift chambers had optimised drift patterns.

» Transport programs for gases had already been developed:

# 1960: AV Phelps et al., with LC Pitchford from 1982,
» 1968: HR Skullerud

» 1986: GW Fraser and E Mathieson

» 1988: RE Robson and KF Ness,

» 1989: Steve Biagi — the Magboltz programs.

» Still, the gas choice was based on practical experience,
more than on calculations.



Atlas u* chambers (MDT)




Atlas u* chambers (MDT)
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Resolution, threshold: 18th electron
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Atlas MDT resolution
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» Tube resolution is sensitive to:
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» Detector optimised combining test i - S

P Reference: Werner Riegler, PhD thesis. Graphs % 73nssimulation
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not the mixture that will be used.



Micropattern devices: Micromegas

» Fast, rate tolerant tracking device

» 1994: Yannis Giomataris and
Georges Charpak

Micro Mesh
(5 pm width)
Spacer

Yannis Giomataris (every 2mm. 100pm diam)



GEMs

» Acts as a “pre-amplifier”
» 1996: Fabio Sauli

A few electrons enter here

Gas
Metal

Dielectric

Metal

E ~ 300 V/cm

Many electrons exit here Fabio Sauli



Simulation of micropattern devices

» Micropattern devices have characteristic dimensions

that are comparable with the mean free path.
o Ion tracks

Attachment »e | ®

[Plot by Gabriele Croci and Matteo Alfonsi]



Trends in u~ tracking

» Intrinsic resolution:
» photographic detectors: 10-100 um

» MWPC.: ~]1 mm detect wire hit

» drift chambers: 150-250 ym measure drift time

» LHC experiments: 50-200 pum gas, electronics ...

» micropattern detectors: 20- 50 um small scale electrodes
» semi-conductors: a few um

» Relying on increasingly subtle sensitive medium properties.

» Better and better understanding of the operating principles
1s required to optimise the devices.



Principles of 1onisation-based tracking

» These devices work according to similar principles:

» a charged particle passing through the gas ionises
some of the gas molecules;

» the electric field in the gas volume transports the
1onisation electrons and, in some areas, also
provokes multiplication;

» the charge movements (of electrons and ions) lead
to induced currents 1n electrodes, and these currents

are recorded.



Ionisation processes: Heed

[gor Smirnov

» PAI model or absorption of real photons:

Atom+m = Iont"+ T + ¢

\ (photo-electric effect)
Atom +y = lon™ + ¢

» Decay of excited states:

[on*" = Ion™ +e (Auger)
[on™ = Jon* +y (fluorescence)
Ion™ = Ion* (Coster-Kronig)

» Treatment of:
» secondary photons, returning to the PAI model,
¥ ionising photo-electrons and Auger-electrons,

collectively known as d-electrons:
e + Atom = Ion* +2 ¢ (absorption of high-energy electrons)



Basic formulae of the PAI model

» Key ingredient: photo-absorption cross section o (E)
g'mwdo o,(E) 1

log —— |+ Relativistic rise
x dE E \/(1—/3 €)+B€
A 1 €
Bz__l 0+ é k d .
Cross section to N e erenkov radiation
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—J o, (E)dE, Rutherford scattering
E "y _
. Nehc
With: ¢, (E)= o, (E)
EZ
2 % xe,(x)
e (E)=1+=P] —>—dx
U 0o X —F

1—6132
6232

Qzarg(1—61[32+i62[32):§—arctan



cross section (Mbarn)

Photo-absorption 1n argon

» Argon has 3 shells, hence 3 groups of lines:
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Importance of the PAI model terms

» All electron orbitals (shells) participate:
» outer shells: frequent interactions, few electrons;
» inner shells: few interactions, many electrons.

» All terms in the formula are important.

do
2~
v E dE A Resonance Ar

Scaling with E*:
equal areas on log scale 2 }—

Rel. rise + Rutherford

weighing cross section v
Cerenkov

0 100 1000 10000
[Adapted from Allison & Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253-298] Energy transter [eV]



How well 1s the cross section known ?

» Agreement is not impressive at the shell edges !
~ 103
2

Ar [Marr & West]
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Energy Loss (PAI Model)

optical loss function Im(-1/&(E)) of solid Si differential cross-section
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Field calculation techniques

» Analytic calculations:
» almost all 2d structures made of wires, planes !
» fast and precise, if applicable.
» Finite elements:
» 2d and 3d structures, with or without dielectrics;
» several major intrinsic shortcomings.
» Integral equations or Boundary element methods:
» equally comprehensive without the intrinsic flaws;
» wrought with difficulties, not yet widely available.
» Finite differences:

» still used for iterative, time-dependent calculations.



Analytic field calculations

» Analytic calculations rely on complex functions because of

two remarkable properties:
» Cauchy-Riemann equations:

~ The real part of any complex analytic function 1s a valid
potential function.

» Conformal mapping:

~ Almost every analytic geometric transformation of a valid
potential, 1s a valid potential too.

» Applicability:
» a surprisingly large class of detectors can be calculated

with this technique: drift chambers, TPCs, MWPCs,
hexagonal counters — but only 1n 2d.



Cauchy-Riemann equations

Augustin Louis Cauéhy
. . . (Aug 21* 1789 — May 23" 1857)
» Express the existence of a derivative of a o

complex analytic function f=u+1v

fr(z):af:au_l_iﬂ Gu:c?v
ox Ox Ox ox 0y
of .0u Ov ov ou o |
—— ——1 T I Georg Friedrich Bernhard Riemann
o1y 0y Oy O x 0y (Sep 17* 1826 — Jul 20™ 1866)
» Imply that u is harmonic:
O’u v v —0u 0’ u +azu_0
Ox° 0x0y 0Oydx Oyoy ox’ 0y
P Reference: A.L. Cauchy, Sur les intégrales définies (1814).

. , . . . Jean le Rond d'Alembert
This mémoire was read in 1814, but only submitted to the . 14 1717 0co0 1783)

printer in 1825.



Conformal mappings

» A geometric transformation through any analytic
function maps any valid potential function to another,
equally valid, potential function.

» Applications:
» Cartesian to polar coordinates;
» off-axis wire inside a tube;

» external and internal areas of polygones;
> ...



Conformal mappings - examples

» Schwarz-Christoffel transformation of a half-plane to
the external part of a rectangle:

Z dE %

T Ve E—1)(E—a) .

0 1 a 0'




Why not 3d ?

» The complex numbers (IR?,+,X) form a field, like the
real numbers (IR,+,X), but (IR%,+,X) does not. As a
result, 2d arithmetic can be done with complex
numbers, but there is no 3d equivalent for this.

» It can be proven that only IR and C can form a
commutative division algebra (field).

» (IR*,+,X) can be made into a non-commutative
division algebra known as quaternions, but this would
not be help since V - E links all dimensions.



Finite elements — common applications

» The finite element method is widely used to tackle a class
of 2d and 3d differential equations:

» heat flow: V2T=1/k JIlor (T: temperature)
» stress analysis: V- o+ F=0 (o: stress tensor)
» magnetic fields: VXB = uJ (J: current)
» electric fields: V-E = ple (p: charge)

» All equations are already written (heat) or can be written
in harmonic form: V?V=g

» V and q are scalar for heat and electric fields, vectorial
for stress and magnetic fields.
» Time-dependent problems are computed in steps.



Mesh

Terminology

» A mesh subdivides the problem

domain 1nto elements.

® Llements are simple geometric
shapes: triangles, squares,
tetrahedra, hexahedra etc.

» Important points of elements are
called nodes. It 1s usual that
several elements have a node at
one and the same location.

Element

+

Node



Shape functions - interpolation

» Each node has 1ts own shape function N(r):

» continuous functions (usually polynomial),
» defined only throughout the body of the element,
» N(r)=1whenr=r, 1.e. on node i,

» N(r) =0 when r = I i#j 1.e.on all other nodes.

» The solution of a finite element problem is given in the
form of potential values at each of the nodes of each of
the elements: v..

» At interior points of an element: V(r) = 2.v. N(r)



Shape functions: 2™ order triangle

» The 2" order triangle and tetrahedron are widely used.

The triangle shape functions are:

»N=82&-1) > N,=4¢.5,
> N,=5Q2E&~1) > N;=4 88,
> N=£Q2E~1) > Ne=488,

» The shape functions for tetrahedra are analogous.

» These elements too are isoparametric.

» Depending on the location of the mid-point nodes, the
edges can be parabolically curved. This feature 1s used
by e.g. Ansys but not by Maxwell.



Are polynomial V. suitable for V' ?

» Polynomial shape functions imply a polynomial
potential, here a 3.2 cm tube + 30 um wire at 3 kV:

Potential Potential error

VkV]

29Fr
- Exact solution
27F
26}

25F

2ap

22} Parabolic fit

21} : - =2r

19

18p




Are polynomial V. suitable for £ 7

» ... and a polynomial E field that is one order lower !

Field Field error

SE/E [%]

g & & 8 o u s & =

i e e e i |+50 %

ot e
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Continuity across boundaries /%

» Across element boundaries, the potential is guaranteed

to be continuous.

» Example for a 2™ order triangle:

» each edge shared by 2 elements, has 3 nodes;

» the finite element method computes a unique
potential for each node, 1.e. the potential at the node
1s the same seen from both elements;

» the potential is parabolic in each element, therefore
also along each line in each element, and 3 points
fully constrain a parabola.




Continuity: the E field

» But ... the components of the E field look like the roofs
of Nlce locally hnear and d1scont1nuous
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The price to pay for finite elements

» Finite element programs focus on the wrong thing:

» they solve V well, but we do not really need it:
~ Quadratic shape functions can do a fair job at
approximating V~log(r) potentials.
~ Potentials are continuous.
» FE is what we use, but:
~ Gradients of quadratic shape functions are linear and are
not suited to approximate E ~1/r, left alone E ~1/r°.
~ Electric fields are discontinuous at element boundaries.
~ A local accuracy of ~50 % in high-field areas i1s normal.

» In exchange, we get a lot of flexibility.



Food for thought ...

» “The Finite Element Method is a very useful tool
which can make a good engineer better, but it can

make a bad engineer dangerous.”

[Robert D. Cook, Professor of Mechanical Engineering University of
Wisconsin, Madison]

» One wonders what the Finite Element Method can do
in the hands of a physicist.



Drift Field

Poisson equation electrons acceptors

5 ¢ ;
V'(EE)Z— pze(p—n—l—ND—NA)—l—pt
€o t ) t

holes donors traps, fixed charges

' iterative calculation of drift field

Continuity equation (drift-diffusion model)

j,=nu,E=D Vn  j=—pu E=D Vp
@z—V-jnJan—Rn 9P V. +G —R
Ot Ot er



Synopsys TCAD (http://www.synopsys.com/Tools/TCAD/Pages/default.aspx): part of Sentaurus process and
device simulation package

Create device structure (materials and contacts) and define doping concentrations - meshing - apply
boundary conditions, select physical models to be used (e.g. mobility, impurities, charge deposition—> iterative
numerical solution of Poisson equation + continuity equations for given boundary conditions

provides an extensive set of physical models - very valuable as reference

Example: silicon strip detector

01: StripDetector_msh.grd : StripDetector_des.dat 01: StripDetector_msh.grd : StripD: des.dat

0 ?7 — 77“::7 '77'13 0 B T e
50 50
100 100
T 1 E &
3 150 3, 150 -
> 1 > !

200 200

ElectrostaticPotential [V] . DopingConcentration [cm*-3]

[ | 4. 6E-01 1 i 1 B 97E+17
=20 -2 0E+01 2ol == 29E+15
-4.0E+01 g 2, 8.9E+12
- . 0 P -9.2E+12
300 T T T T T T T T T T T T T GOE\+01 300 1 . T I T -\ . 1 1 I T T 1 i I T 1 1 1 P 1 1
! ! I .~ -8.0E+01 “3.0E+15
0 100 200 300 . e 0 100 200 3.
X [um] -1.0E+02 X [um] -1.0E+18

from http://ppewww.physics.gla.ac.uk/det_dev/activities/threedee/Documents/BarcelonaSeminar.html



Boundary element methods

» Contrary to the finite element method, the elements are
on the boundaries, not in the problem domain.
» Charges are computed for the boundary elements.

» The fields in the problem domain are calculated as the
sum of Maxwell-compliant field functions, not
polynomials. There are no discontinuities.

» They do pose numerical challenges due to inherent
singularities.



Solution of 3D Poisson's Equation
using BEM

6)\

Numerical implementation of boundary integral equations (BIE) based on Green’s
function by discretization of boundary.
Boundary elements endowed with distribution of sources, doublets, dipoles, vortices.

J

. .. € -permittivity of medium
discretization

\~/ @

U Electrostatics BIE

Potential at r
Charge density at r’

Accuracy depends critically on the estima-
tion of [A], in turn, the integration of G,
which involves singularities when r = r'.

Influence Coef-

ficient Matrix
Most BEM solvers fail here.




Contrast of approaches

nodal versus distributed

Influence of a flat triangular element in Usual BEM
J We have derived exact expressions for the

Y integration of G and its derivative for uni-
Influenced form charge distributions over triangular
and rectangular elements

Point

Influence of a flat triangular element in ISLES

i

Influenced
Point

0.0, zMax)

Conventionally, charges are assumed to be
concentrated at nodes. This is convenient

since the preceding integration is avoided.
Introduces large errors in the near field.

Z (0.0, zMax)




Eletrostatics of Micromegas

FEM Results

neBEM Results
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gg Elastic cross section
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r: mean free path 3
'§ Hard spheres
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il IExcitations,
i ! jonisation,
. . e i Wattachent,
' USlIlg. '01.01 A 1 10 100 1000
. . Electron energy [eV]
» atomic radius: r ~ 70 pm

» atomic cross section: o ~ 1.5 10'° cm?

» atoms per volume: £ ~ 2.7 10" atoms/cm?
» Over a distance L, the electron hits -~ ¢1. atoms.

» Hence, the mean free pathis A_=1/(Z0) ~ 2 um.



Scale > mean free path (> 1 mm)

» For practical purposes, electrons from a given starting
point reach the same electrode — but with a spread in
time and gain.

» Electrons transport is treated by:
» Integrating the equation of motion, using the Runge-
Kutta-Fehlberg method, to obtain the path;
» 1ntegrating the diffusion and Townsend coefficients
to obtain spread and gain.

» This approach is adequate for TPCs, drift tubes etc.



Runge-Kutta-Fehlberg integration
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Scale > mean tree path (100 ym - 1 mm)

» Electrons from a single starting point may end up on
any of several electrodes.

» Calculations use Monte Carlo techniques, based on the
mean drift velocity and the diffusion tensor computed
by microscopic integration of the equation of motion
in a constant field. Gain depends on the path.

» This approach is adequate as long as the drift field is
locally constant — a reasonably valid assumption in a
Micromegas but less so in a GEM.



Analytic vs Monte Carlo

~

XA
n

R
» Analytic integration

» Runge-Kutta-Fehlberg technique;
» automatically adjusted step size;

» optional integration of diffusion,
multiplication and losses.

» Monte Carlo integration
» non-Gaussian in accelerating,

divergent and convergent fields;
» step size to be set by user.

[Figures made by Gilles Barouch, CEA]




Scale ~ mean free path (1-100 yum)

» At this scale, where the mean free path approaches the
characteristic dimensions of detector elements, free
flight between collisions, 1s no longer be parabolic.

» The only viable approach here seems to be a complete
microscopic simulation of the transport processes,
taking local field variations into account.

» The method shown here is based on the Magboltz
program.



Molecular tracking: e

» Example:
» CSC-like structure,
> Ar80 % CO, 20 %,

» 10 GeV p.

» The electron is shown
every 100 collisions,
but has been tracked
rigourously.
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What 1s 1n the Magboltz database ?

» A large number of cross sections for 60 molecules...

» All noble gases, e.g. argon:
~ elastic scattering,
~ 3 excited states and
~ 1onisation.

» Numerous organic gases, additives, e.g. CO.:

~ elastic scattering,

~ 44 1nelastic cross sections (vibrations, rotations, polyads)
~ 35 super-elastic cross sections,

~ 6 excited states,

~ attachment and

~ 1onisation.
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Argon

Cross section [10

» Elastic scattering:
» dominant till ~50 eV;
» features Ramsauer dip

01

—
Y ™

Elastic

/

}

Ramsauer dip

Ionisation

Excitations

» Ground state: [Ne] 3s23p® o

A 1

the lowest excited states have an e 1n the

» 3" ghell: [Ne] 3s23p° 3d', or

» 4" shell: [Ne] 3s23p° 4s', [Ne] 3s23p° 4p/, ...

» Attachment is not significant.
» Jonisation

» occurs from 15.7 eV;

aal i il ALl
10 100 1000

Electron energy [eV]

» 2 levels: 3p° spin and orbital angular momentum 7T or Tl.



Energy (eV)

Argon levels
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C()2 — vibration modes

L Vibrations V(ijk)
= CO2 1S linear:

»0-C-0

2

[cm7]

Total cross section :
» Vibration modes are

numbered V (ijk)

» j: symmetric,

Crossasection
o

» j: bending,

» Lk: anti-symmetric. P
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Veritication: drift velocity Ar/CO,

® In a constant field, Magboltz
and the molecular tracking

procedure should give
1dentical results.

» This is shown to hold for the

Ar CO2 mixture.
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Drift velocity in Ar 80 % CO, 20 %
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Diffusion 1n Ar/C()2
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Multiplication in Ar/CO,

Multiplication in Ar 80 % CO, 20 %

» In a constant, low field

there 1s agreement.

Gain [1/cm]

» More on higher fields ...

Slope of distribution
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Ar/COZ: size distribution

» With increasing field, the size distribution becomes

more and more “‘round’’:

Multiplication at E = 45 kV/cm
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Summary

» Inspite of the long history of gas-based detectors,
understanding of their behaviour still improves.

» Calculations for gas detectors are therefore steadily
becoming more detailed, and it becomes more and more
important for the users to understand the model.

» In some domains, e.g. signal shapes, one can easily
verily the calculations by hand. In others, e.g. the gas
properties, this 1s unfortunately far from trivial.



