

University of Athens

The ATLAS experiment

The ATLAS Muon Micromegas R&D project

Konstantinos Nikolopoulos Univ. of Athens / BNL

On behalf of the Muon ATLAS MicroMegas Activity

1st International Conference on Micro Pattern Gas Detectors Kolympari, Greece, 12 -15 June 2009

ATLAS at LHC and the super-LHC scope

General purpose detector : study pp collisions at 14 TeV with a luminosity 10³⁴ cm⁻²s⁻¹

 \rightarrow aiming primarily to probe the source of the Electro-Weak Symmetry Breaking

s-LHC to extend life-time of the accelerator, complete LHC's research program and bridge LHC with future activities (ILC? CLIC?) → moderate cost given LHC investment Possible physics objectives: Higgs rare decays, couplings and Higgs potential,

if no Higgs \rightarrow scattering of W and Zs

2

ATLAS upgrade for the s-LHC

K. Nikolopoulos (Athens U./BNL) – ATLAS MicroMegas R&D project – MPGD 2009 – June 15th, 2009

Requirements for the Muon System Upgrade

To meet goals of s-LHC

→ maintain good detector performance

- Operation in a high counting rate environment (>5 kHz/cm²) including dense ionization
- High hit reconstruction efficiency (~98%)
- High spatial resolution (~100 µm) up to large incident angles (<45°)
- Good time resolution (~5 ns) to allow bunch crossing identification
- Good two-track separation

Bulk Micromegas promising technology for industrial production of large surface detectors (~1m x 2m) • Cost effective

- Mechanically robust
- \rightarrow Could provide both tracking and trigger

Aim : Study whether Micromegas solution suitable for such a large scale muon system

The MAMMA Collaboration

Arizona, Athens (U, NTU, Demokritos), Brookhaven, CERN, Harvard, Istanbul (Bogaziçi, Doğuş), Naples, CEA Saclay, Seattle, USTC Hefei, South Carolina, St. Petersburg, Shandong, Stony Brook, Thessaloniki

Interest in the project \rightarrow Already 18 collaborating institutes Also part of RD51

The first prototype (P1)

Standard bulk Micromegas fabricated at CERN in 2007

- Homogeneous stainless steel mesh
- 325 line/inch = 78.2 µm pitch
- Wire diameter ~25 µm
- Amplification gap ~ 128 μ m
- 450 mm x 350 mm active area
- Different strip patterns
 250, 500, 1000, 2000 µm pitch
 450 mm and 225 mm long
- Drift gap : 2-7 mm

One of the largest Micromegas available at the time of its production

Read-out Electronics

Currently read-out based on ALTRO chip and ALICE DATE system.

Operation parameters 32 channels 200 ns integration time 65 charge samples/ch 100 ns/sample 15 pre-samples 1 ADC count ~ 1000 e⁻ No trigger time info recorded

Requirements for the final read-out scheme Rate capability ~100 kHz Peaking time in the 20 – 100 ns range Time Resolution ~few ns Charge Measurement Capability (likely 8 – 10 bit ADC) Zero suppression (read-out link bandwidth limitations) Radiation hardness / SEU tolerance

Laboratory tests on P1 with ⁵⁵Fe

K. Nikolopoulos (Athens U./BNL) – ATLAS MicroMegas R&D project – MPGD 2009 – June 15th, 2009

Test Beam : Summer 2008

CERN SPS beam line in 2008 using 120 GeV Pion beam

External tracking with three Si detector modules (Bonn Univ.)

Three non-flammable gas mixtures with small iso-butane percentage: $Ar:CO_2:iC_4H_{10}$ (88:10:2), $Ar:CF_4:iC_4H_{10}$ (88:10:2), $Ar:CF_4:iC_4H_{10}$ (95:3:2) ("T2K-gas")

Data acquired for different strip patterns and impact angles (0° to 40°)

Event Display

"Geometrical" Efficiency

- Ar:CF₄:iC₄H₁₀ (88:10:2)
- Strips: 500 μ m pitch
- V_{mesh} = 450 V (35.2 kV/cm)
- Drift field = 200 V/cm

Black: beam profile Red: tracks w/o Micromegas hit

Pillars contribute to the geometrical inefficiency of the chamber at the ~1% level.

Efficiency Vs Amplification

Efficiency (%)

Spatial Resolution

BROOKHAVEN

K. Nikolopoulos (Athens U./BNL) – ATLAS MicroMegas R&D project – MPGD 2009 – June 15th, 2009

Summary of prototype performance

The first prototype has been thoroughly tested in the lab and in test beams and it was found to have good performance

Efficiency >99% for Gain >3.10³

Spatial resolution 24 μm (36 μm) for 250 μm (500 μm) strip width

Simulation of the Micromegas detector

Effort to develop a simulation of the full chain from the ionization to the read-out in order to :

- Understand performance of chamber in test beam

- Study performance of chamber for different parameter choice

- Evaluate potential of new ideas

Simulation of the Micromegas detector (II)

GARFIELD/HEED/MAGBOLTZ for electron production/drift.

Semi-analytical approximation for ion induced charge

/ include shaper / electronic noise e.t.c

K. Nikolopoulos (Athens U./BNL) – ATLAS MicroMegas R&D project – MPGD 2009 – June 15th, 2009

BROOKHAVEN NATIONAL LABORATORY

Simulation : Residual distribution

Simulated residual distribution as a function of strip width for uniform illumination

Comparison with real data

The simulated resolution is in agreement with the test beam data resolution

Resolution for Inclined Tracks

Spatial resolution for charge interpolation (ratio) and binary read-out as a

function of the incidence angle and the strip width.

Micromegas as μ -TPC

For non-perpendicular incidence → position resolution degraded due to fluctuation of charge deposition along the track

Use the Micromegas as a µ-TPC →Measure arrival time of signals on strips and reconstruct space points in the drift gap Drift velocity

Micromegas as μ -TPC

Requirements for µ-TPC different wrt charge interpolation techniques. (optimize drift gap/short peaking times/moderate charge measurement)

Local track direction can be advantageous for pattern recognition

2008 electronics not ideal for this study

 \rightarrow Try again with better setup

- Gas: Ar:CF₄:iC₄H₁₀ (95:3:2)
- Drift field = 360 V/cm
- Drift velocity = 7.8 cm/µs (Magboltz)
- Chamber rotation = (40±3)°
- Reconstructed track inclination = (44±4)°

Promising/challenging \rightarrow potentially solves angle problem \rightarrow Interesting R&D

The ~1/2 full size prototype

A half size prototype is almost ready at CERN

- 400 x 1300 mm² active area
- "T2K" mesh
 450 line/inch = 56.4 µm pitch (calendered)
 18 µm wire diameter
 128 µm amplification gap
 Segmented
- Strip pitch: 250 µm and 500 µm
- Long (80 cm) and short (30 cm) strips

details in Rui de Oliveira's talk

Study performance in lab and in test

beam as soon as available

The PCB

The stretched micromega mesh on its frame

Future Work

Evaluate chamber performance

- Half size prototype

See :

"Micromegas study for the

sLHC enviroment"

D. Attie et al.

- µ-TPC method

Study Spark Protection

- - Resistive coating (Saclay)

- Double stage amplification

Behaviour in s-LHC enviroment

See:

"A study of a Micromegas chamber in a neutron beam" *G. Fanourakis et al.*

- Irradiation test in neutron facility on small chamber

- Ageing test (\rightarrow as soon as materials are defined)

Define design parameters (chamber+electronics) for phase I upgrade

(~ 1m x 1m chamber in CSC region) by end of 2009

Demonstration of suitability for s-LHC LoI (2010)

 \rightarrow Full size prototype (1m x 2m) / production procedures

/ optimized working points / electronics design

Summary

- ■350 x 450 mm² prototype built and tested
- \rightarrow Good performance in gas amplification and efficiency.
- \rightarrow Spatial resolution ~ 24 µm (36 µm) with 250 µm (500 µm) strips.
- Inclined tracks \rightarrow local track reconstruction possible (µ-TPC)
- Simulation → study performance dependence on various parameters
- 400 x 1300 mm² prototype almost ready : performance to be studied in 2009.

Bulk Micromegas technology is a promising candidate for s-LHC upgrade

