The LHC Luminosity Upgrade and Related ATLAS Detector Plans

Fred Hartjes NIKHEF

F.Hartjes@nikhef.nl

On behalf of the ATLAS Upgrade Steering Group

1st International Conference on Micro Pattern Gaseous Detectors

MPGD 2009, Kolympari, Crete, Greece, 12-15 June 2009

Overview

- Motivation of the LHC luminosity upgrade
- Progressing to sLHC
- Phase I and II in Atlas upgrade
- Upgrade activities on subdetectors
 - Muon system and calorimeters
 - Services
 - Triggering
- New inner detector
 - Developments in planar silicon
 - Alternative technologies for hottest parts (B-layer)
 - 3D silicon
 - Diamond
 - Gossip
- Conclusions

- Instead of running at *constant* luminosity there're good reasons to *increase* luminosity
- Increasing beam energy not considered in near future
 - => replacing LHC
- Luminosity increase by 2-3 x 10³⁴ cm⁻²s⁻¹ occurring gradually (phase I)
- For 10³⁵ cm⁻²s⁻¹ major modifications needed on machine and detectors (phase II)

Why upgrade LHC?

Fred Harties

R.Garoby, LHCC, July 1, 2008

Supposed increase LHC luminosity

Not few major steps but rather a semi continuous process with limited increase during maintenance periods

A few luminosity constraints present LHC

Beam-beam interaction

- electrostatic repulsion causing tuning deviation
- Long range beam-beam effects
 - Electrostatic repulsion when beams approach each other
 - Until 9 σ beam separation
 - e => affecting beam tuning => increased beam loss

• Collimation and machine protection: critical

- 1% beam loss in 10 s at 7 TeV and full luminosity => 500 kW
- 360 MJ stored in full LHC beam

Magnet quench limit 8.5 W/m

Beam pipe heating due to electrons in the beam vacuum

present and future injectors

Proton flux / Beam power

(LP)SPL: (Low Power) Superconducting Proton Linac (4-5 GeV)
PS2: High Energy PS (~ 5 to 50 GeV – 0.3 Hz)
SPS+: Superconducting SPS (50 to1000 GeV)
SLHC: "Superluminosity" LHC (up to 10³⁵ cm⁻²s⁻¹)
DLHC: "Double energy" LHC (1 to ~14 TeV)

Roland Garoby, LHCC 1July '08

Upgrade schedule

MPGD 2009, Kolympari, Crete, Greece, 12-15 June 2009

Frank Zimmermann, Feb. 27, 2009

When will this all happen?

• Starting from known LHC starting date (Nov. 2009)

• CERN abolished 1st fixed winter shutdown

• Possibly this will also be the case for the following running periods

- 1. IBL => based on what can realistically be achieved, Atlas aims for end 2014 (start of phase I)
- 2. If LHC Phase I appears to become earlier, then the programme will accelerated

LHC running schedule how it might be

Assuming

- Running periods of 11 12 months, followed by 6 months maintenance/ upgrade
- We need three running periods to come to nominal LHC luninosity
- We need three running periods in phase I to reach $2^{-3} \times 10^{34}$ cm⁻² s⁻¹ luminosity
- ATLAS needs 18 months shutdown to install the full upgraded inner detector

MPGD 2009 Kolympari, Crete, Greece, 12-15 June 2009

"phase-2" IR layouts

early separation (ES) J.-P. Koutchouk stronger triplet magnets

full crab crossing (FCC) stronger triplet magnets

L. Evans, W. Scandale, F. Zimmermann

early-separation dipoles in side detectors , crab cavities → hardware inside ATLAS & CMS detectors, first hadron crab cavities; off-δ β crab cavities with 60% higher voltage
 → first hadron crab cavities, off-δ β-beat

large Piwinski angle (LPA) larger-aperture triplet

F. Ruggiero, W. Scandale. F. Zimmermann

magnets

 low emittance (LE) R. Garoby stronger triplet magnets

smaller transverse emittance
 → constraint on new injectors, off-δ β-beat

beam generation | Frank Zimmermann, Atlas Upgrade week, 27 February 2009

Basic luminosity during phase II running

Experiments: causing pile-up problem (up to 400 interactions/crossing)

Plan solving pile-up problem by luminosity levelling

By dynamic tuning of β (beam size function), θ (collision angle), crab voltage (ES or FCC) or bunch length

events per crossing

LHC phase I upgrade

- Proceed to ~ 700 fb-1 of recorded data
- Still using the existing Inner Detector
- Adding IBL (insertable B-layer inside existing Atlas pixel tracker
 - Present B-layer fails at $L > 10^{34}$ cm⁻² s⁻¹ (readout occupancy)
 - New beam pipe (28 mm) required

• Limited performance of TRT at 3* 10³⁴ cm⁻² s⁻¹

- Occupancies from 10 40% to 30 70% (barrel) and 40% (endcap)
- But still enhancing tracking

LHC phase II upgrade

Proceed to **additional** ~ **3000 fb-1** of recorded and *analyzable* data

- => actual detector dose will be higher
- Modifying cavities
- $L => 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Beam crossings $4 \rightarrow 2$ (only CMS and ATLAS)
- Complete replacement inner detector (ID)
- Upgrading muon system and calorimetry
 - Scope presently unknown
- Trigger upgrade

Scope of the ATLAS Muon Chamber Replacementfor phase IILimitations – occupancies of the chambers

- Depending on cavern background, either minimal (nominal) or very large fraction (5 x nominal) of Atlas muon system needs replacing
 - New detector technologies may be used
 - large area woven Micromegas

At least half of the chambers in the inner end-cap disk would have to be replaced by chambers with higher high rate capability.

Limitations – occupancies of the chambers

Ref: J. Wotschack, 2nd RD51 Coll. Meeting; See this conference

Fred Hartj Almost all chamber would have to be replaced.

beryllium beampipe is also the only way of significantly reducing the background in the muon spectrometer.

◆ SS or Al --> Be in ECAL and EC-toroid region

• Much cheaper than building new chambers

7

Forward LAr calorimeter upgrade for phase II

- **Option 1** : replace both
 - HEC cold electronics
 - Cold FCal
- Option 2: replace only cold FCAL
 - large cold cover needs to be removed
- Option 3: do not remove anything
 Add Mini-FCal in front of cold Fcal

Option 3: radiation absorbing by MINICAL

MINICAL either copper or fromTungsten/diamond sandwiches
 Radiation dose goes to 2*10¹⁸ n/cm² (Shupe)

MPGD 2009, Kolympari, Crete, Gree Roy Langstaff, LAr sLHC Detector Meeting, May 25, 2009

Services \rightarrow developing new technologies for phase II

Powering technologies for phase II

Motivation

- Upgraded ID will have much more detector modules
- New electronics (130 nm or smaller) have low supply voltage (~2V)
- No substantial increase of cabling foreseen
- Present SCT: ~ half of electrical power goes into cables

Serial powering

- Local voltage regulation for each detector module **But:**
- Problem: no well defined GND potential on modules

Parallel powering using DC-DC converters

- Input 12 20V, regulation to $\sim 2V$
- All detector GNDs may be linked together

But:

• Risk on switching noise (ironless inductors)

Integrated DC-DC converter F.Faccio, Atlas Upgrade Week, Feb. 24, 2009

Integration in ATLAS SCT module design From D.Ferrere University of Geneva 20

New optical link technology => Iflink

Present VCSEL technology not sufficient rad hard (1.5 10^{15} cm⁻² n_{eq}) for B-layer

- Alternative = (Iflink)
 - Using Pockels effect: change of ε_r by transverse E field
 - Thermally poled electro-optic active fibre (quartz)
 - => possibly sufficiently rad-hard for B-layer
 - Low modulator mass
 - TU-Delft (Neth.) and ACREO (Sweden) involved

Test setup modulator

Cooling

Present SCT and pixel tracker: C_3F_8

- Upgrade possibly CO₂
 - Cheap
 - Environmental neutral

• Thinner pipe diameter possible (4 \rightarrow 2 mm ID), better flexibility

B. Verlaat, Atlas upgrade week, Feb. 25, 2009

M. Battistin, Atlas upgrade week, Feb. 25, 2009

Trigger and DAQ after phase II

- L-1 exceeding 100 kHz at 10^{35} cm⁻² ms⁻¹
- Muon trigger needs improvement

Option 1

- Add forward detectors (TGC or MPGD)
- Add RPC
- Cutting low integral-B dl regions
 - Tracks passing both barrel and endcap (opposite) toroidal fields
 - => no proper momentum measurement
- Improvement calorimeter trigger
 - Use full granularity

Option 2

- Combine subtriggers at level-1
 - => check for isolated muon => far from any calorimeter trigger?

Option 3

- Create track trigger from ID
 - > very challenging
 - GridPix trigger (see Anatoli Romaniouk, next talk)

Improving sharpness of muon trigger

- RPCs are used for fast trigger
- Adding additional trigger chambers (RPC) to cancel the momentum error by collision spread on low P_T tracks

George Mikenberg, Atlas Upgrade Week, Feb. 26,2009

Inner detector layout in phase II

• Baseline layout

- 2 long strip layers
- 3 short strip layers
- 3 pixel layers
- 1 B-layer (pixel layer 0)

ID geometry from myversion.geom 16:00:54 04/05/09

Which detector technologies can be used for upgraded Inner Detector in phase II?

Fred Hartjes

Fluences for subdetectors after 3000 fb⁻¹ (1 MeV n_{eq} cm⁻²)

Short strips: 2 – 3 *10¹⁴

Pixels: 0.6 – 8 *10¹⁵ (omitting B-layer)

ATLAS Radiation Taskforce http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/RADIATION/RadiationTF_document.html

Fluence for the B-layer at sLHC in phase II

 $\bullet R = 37 mm$

Data from Atlas experts (Craig Buttar, Ian Dawson and Nigel Hessey)

Progress in planar silicon

Required charge signal

Conclusions using planar silicon for phase II

- Long strips (~ 1.5 *10¹⁴ cm⁻²)
- Short strips (2 3 *10¹⁴ cm⁻²)
- At the limit for
 - Pixel layers $(0.6 (8) \times 10^{15} \text{ cm}^{-2})$
 - Dangerous for pixel layer 1

Complication: operation at -25 °C

=> other technology required for

- B-layer $(2 * 10^{16} n_{eq}/cm^2)$
- > or replacing B-layer 3-5 x during sLHC lifetime

3D silicon

3D silicon

- Reducing path in the silicon bulk by creating n⁺ and p⁺ channels
 - Low bias voltage, low emitted heat level
- Edgeless sensor
- Safe operation until ~ $10^{16} n_{eq}/cm^2$
- => OK for inner pixel layer
- => problematic for B-layer
- Operation at -10 °C

• But

- A bit less performance
 - Efficiency of perpendicular tracks
- Production problems not well solved
- A bit long charge collection time (20 35 ns)

Cinzia da Via, Atlas Upgrade Week, Feb. 23, 2009

Diamond

Pro

- Presently charge signal > 10ke⁻
- Low capacity ($\varepsilon_{\rm R} = 5.7$)
- No bias current (10 pA region)
- Simple operation at any temperature
- Simple processing
- Radiation tolerance comparable to 3D silicon

But

- Polycrystalline CVD diamond: less good position resolution (~ 14 um)
- Single crystal CVD diamond OK, but hard to produce

Gossip

- Gaseous pixel detector
 - Narrow drift gap (~ 1 mm)
 - Electron from traversing particle drifts towards grid and is focused into one of the holes
 - Thereafter a gas avalanche is induced ending at the anode pad of the pixel chip

Field configuration of GOSSIP

- Comparatively low drift field (100 700 V/mm)
- High amplification field (~ 10 kV/mm) to induce gas avalanche
- Micromegas holes centred on pads pixel chip
- Avalanche broadened by diffusion to 15 – 20 μm

Spark protection

- Always needed for gaseous detectors
 - Spark induced by dense ionisation cluster from the tail of the Landau
 - Unprotected pixel chip rapidly killed by discharges
- WaProt: $7\mu m$ thick layer of Si_3N_4 on anode pads of pixel chip
 - Normal operation: avalanche charge capacitively coupled to input pad
 - At spark: discharge rapidly arrested because of rising voltage drop across the WaProt layer

MIP response for SiProt2

charge signal (ke')

5 layers of

1.4 µm

 Si_3N_4

Measured histogran Fitted primary Land Assumed pedestal p V_{mash} = - 600 V

- Conductivity of WaProt tuned by Si doping
- For sLHC BL we should not exceed $1.6*10^9 \Omega \text{cm}$ (10 V voltage drop)
- Has proven to give excellent protection against discharges

• Chamber gas: DME/CO₂ 50/50

- Low, constant mobility, even at high drift fields
- \rightarrow low Lorenz angle (~9° at B = 2 T)
- High primary ionization (45 clusters/cm)
- Excellent quencher (UV absorption, preventing sparks)
- Low diffusion ($\sigma = 100 \ \mu m/\sqrt{cm}$)

Gas gain 5000

- \rightarrow good Z resolution (slew rate)
- Optimal hit efficiency
- Gain of 5000 challenging at B-layer (0.9 GHz/cm² rate)!!!

🔶 Drift gap 1 mm

- \rightarrow theoretical hit efficiency 98.9%
- \rightarrow minimal ballistic deficit

Drift field 7 kV/cm

→ good drift velocity, short drift time even for this low mobility gas

Gossip working point for present studies

Gossip radiation tolerance

• Dose units: $2 * 10^{16} n_{eq}/cm^2 \le 3.4 * 10^{16} hadrons/cm^2$

- => 342 C/cm^2 using DME/CO₂ 50/50 @ G = 5000
- Corresponds to 2.1 C/cm for 20 μm Ø sense wire

Summarizing Gossip

 Gossip has both very significant advantages and drawbacks compared to solid state detectors

🔶 Pro

• Outlook for extremely high radiation tolerance $> 3.4 * 10^{16}$ hadrons/cm²

• Low mass (0.7% including cooling, services and support)

- No bias current, only signal current
 - \sim 3.5 µA/cm² for 0.9 GHz/cm² hadronic flux (sLHC B-layer)
- Virtually no detector capacity

Wide temperature range (room temp. possible)

• No bump bonding => mass and costs reduction

🔶 Con

- Additional services required (gas pipe, 2nd HV line)
- Lower position resolution than is possible with solid state detectors
 - $\sim 18 30 \ \mu m @ 0 0.15 \ radian (from recent simulations)$
- Critical regulation of grid voltage
- Tendency to sparking => solvable
- Long charge collection time (20 80 ns gas dependent)

Risk on accelerated ageing

11000

Comparison of detector technologies for B-layer of sLHC (phase II)

• Assume TimePix-like frontend pixel chip (accurate time info)

technology	Planar silicon	3D silicon	Diamond	Gossip
possible pos resolution (um)	< 10	< 10 ?	~ 14 (polycryst	~20
resolution for inclined tracks	reasonable	reasonable	reasonable	mediocre
charge collection time (ns)	< 6	20 - 35	2	20 - 80
mass including cooling	pretty high	pretty high	medium	low
life time in SLHC (3000 fb-1)	20 - 50%?	~ 50%	~ 50%	> 100% poss.
production technology	well known	difficult	difficult	much R&D
bias voltage control	easy	easy	easy	critical
ease of operation	reasonable	reasonable	relaxed	critical
cooling	critical	less critical	relaxed	relaxed
additional services	NO	NO	NO	HV + gas
additional DAQ channels	NO	NO	NO	probably
track efficiency	100%	>95%?	98-100%	98%
costs	75 - 300 €/cm2	150 - 300 €/cm2	~ 1000 €/cm2?	20-30 €/cm2
size of coll. (ATLAS institutes)	>10	10	6	2
approved R&D?	yes	yes	Yes	near submit

Conclusions on Atlas upgrade activities

- Going to higher luminosity in combination with more advanced triggering enhances LHC's discovery potential
- Limited hardware modifications required for phase I
 - Insertable B-layer
 - Few chambers (RPC, TGC) to be added for improving muon trigger
- Major modifications for phase II
 - Replace present Inner Detector
 - Possible replacement/ modification of muon chambers and FWD calorimetry (MINICAL)
- Research on new technologies for services
 - Powering, cooling, optical links,
- Improvements in planar silicon technology
 - => planar silicon may still be used for long and short strips and most of the pixel layers
- Alternative technologies being developed for B-layer in phase II
 - 3D (not full sLHC lifetime)
 - Diamond (not full sLHC lifetime)
 - Gossip (many pros and cons)

Gossip may also be used for intermediate layers

Low radiation length; low costs