THGEM Operation in Ne & Ne-Mixtures*

M. Cortesi, A. Breskin, V. Peskov, J. Miyamoto, G.Bartesaghi,R. Chechik, A. Layshenko

Weizmann Institute of Science, Rehovot, Israel

In collaboration with

J. Maia, C. Azevedo, J. Escada, J. dos Santos Universities of Beira Interior, Aveiro & Coimbra PortugalV. Dangendorf PTB Braunschweig, GermanyG. GambariniUniversity of Milan, Italy

* Work pursued within the framework of CERN-RD51

For more info: THGEM in Ne & Ne/CH $_{\rm 4}$ CORTESI et al. submitted to JINST(arXiv:0905.2916); RD51-Publications.

Thick-GEM (THGEM) multipliers

Manufactured by standard PCB techniques of precise drilling in G-10 (and other materials) and Cu etching.

THGEM Recent review by BRESKIN et al. http://dx.doi.org/10.1016/j.nima.2008.08.062

The THGEMs at Weizmann

3x3 cm²: basic studies, many geometries

Gain: Single THGEM (t=0.8mm)

single THGEM ($t = 0.8$ mm, $d = 0.5$ mm, $a = 1$ mm, rim = 0.1 mm)

High gain in Ne and Ne-methane<u>low voltage @ low CH₄ concentrations</u>

In Ne-Mixtures Larger dynamic range compared to Ar/CH $_{\rm 4}$

Gain: Single/Double THGEM (t=0.4mm)

Very high gain in Ne and Ne mixtures, even with X-rays At very low voltages !! 2-THGEM 100% Ne: Gain 106 @ ~300V1-THGEM Ne/CF4(10%): Gain > 106 @ ~800V

THGEM operation: Gas Impurities

Impurities affect gain in Ne but not in Ne/CH $_{\rm 4}$ **!**

MPGD2009 - June 2009 THGEM Operation in Ne and Ne-Mixtures

 -1

Energy Resolution & rise-time

THGEM signals w fast amp

higher voltages &

faster avalanches

Increasing %CH₄ \rightarrow

Long-Term Stability (after gas stabilization)

Long-Term Stability: Gas Impurity

 $Single\,THGEM$ (t=0.4mm, d=0.5mm, a=1mm, rim=0.12mm)
 $Gain = 104 \,$ UV light, a= flux $\approx 104 \,$ Uz/mm² \mathcal{G} ain = 10⁴, UV light, e⁻ flux ≈ 10⁴ Hz/mm²

THGEM –hole diameter & avalanche

Avalanche & photonsOutside the hole. Ne, Ar have energetic photons Need to optimize sizes and fields according to the gas.

Avalanche de-confinement (Field extends out of the THGEM holes) Photon-induced secondary effects depend on THGEM geometry and filling gas.

THGEM -Rim effect

Photon detectors for RICH: reflective CsI PC deposited on the THGEMPhotoelectron collection efficiency

Focusing is done by the hole dipole field.

- Maximum efficiency obtained in $Ar/5\%CH_4$ at E_{drift} =0.
- Slightly reversed E_{drift} (50-100V/cm) => good photoelectron collection & low sensitivity to MIPS (e.g. proved with multi-GEM detectors of PHENIX)

Currently R&D for upgrade of COMPASS & ALICE RICH

PC Electric Field and e- Extraction

<u>RICH Requires:</u>

- \cdot High E on the PC surface (for e-extraction \bigstar high QE).
• Good e- focusing into the holes (for high detection effic
- \cdot Good e focusing into the holes (for high detection efficiency).

Electron collection efficiency

3x3cm2 THGEM (thickness = 0.4 mm, hole diameter = 0.3 mm, pitch = 0.7 mm, rim = 0.1 mm)

<u>Method:</u> Pulse-counting of the fraction of single-e⁻ events reaching the THGEM bottom

THGEM large hole dimensions \rightarrow efficient e⁻ collection into the hole:

% full single-e⁻ detection efficiency @ gain <100 (depends on %CH.) $\%$ full single-e detection efficiency @ gain <100 (depends on %CH₄)

2D imaging: results with Neutrons

A fast neutron spectrometer + imaging of flux for BNCT applications

THGEM properties: Summary (1)

1) MM-scale dimensions

Economic production (104 holes =300\$)Versatile geometry & robust (not destroyed by sparks). Efficient coupling with photocathodes/convertorsSingle-electron sensitivityRim important for high achievable gain \rightarrow longer stabilization time (not dramatic)
Lligh nate conshility (, 1011 lo/mm? @ , 104 in 4n/Cl L w single nheteclectrons) High-rate capability (~10MHz/mm² @ ~10⁴ in Ar/CH₄ w single photoelectrons) Timing: ~10 ns (β, cosmic), ~1-2 ns (multi-photon pulse)

2) $\sf Large$ <code>multiplication</code> in Ne, Ne/CH $_4$ & Ne/CF $_4$ @ low operation voltages:

- \rightarrow Reduced probability of sparks due to defects and less charging-up
- \rightarrow Large holes diameter \rightarrow good e-collection already @ low gains (<10³) 3)
- Large Dynamic Range (prevent discharge due to high ionizing background)

Single electron (UV-light) Single THGEM 105-6(0.4mm) – ¹⁰6(0.8mm) Double THGEMs gain 106-107 (0.4mm)

soft x-raysOnly ~10x lower gain

THGEM properties: Summary (2)

3) UV detectors:

- \rightarrow Single photon detection: gain >10⁶
- (higher gain \rightarrow <u>more photons per ring</u>)
vergoe 6 = 78-90% \rightarrow 0.3mm holes/1mm pitch \rightarrow CsI coverage ϵ_{PC} = 78-90%
depending on the riv
	- depending on the rim size (0.1-0 mm)
- \rightarrow CsI QE @ 170 nm = 30%
 \rightarrow Extraction efficiency in
- \rightarrow Extraction efficiency in Ne/10%CF $_{4}$ \rightarrow $_{\text{extra}}$ = 90%
- \Rightarrow Electron Collection Efficiency \Rightarrow $\varepsilon_{\text{coll}}$ = 100% for gain > 10³
 \Rightarrow Effective Quantum Effiency:
- Effective Quantum Effiency:
	-

<u>QE_{eff}= QE x e_{extr} x e_{extr} x e_{coll} ~ 21-24%
Detection efficiency = QE_{eff} x electronic-threshold factor (0.8-0.95)</u>

Presently in RICH for COMPASS:

MWPC in CH₄, typ. gain ~ 10⁴; <u>Effective Quantum Efficiency (@ 170 nm) ~ <mark>20%</mark></u>

Ongoing: IMAGING test to see if in Ne/CF $_4$ there are no photon-feedback "satellites" $\,$

4) Localization resolution (x-rays):

THGEM: 0.5mm holes, 1mm pitch & 2mm readout pitch \rightarrow

 1.4 mm FWHM in Ne w. 9keV - 0.3mm FWHM in Ne/5%CH $_{\rm 4}$ w. 4keV

Applications under consideration: in High Energy Physics, Nuclear Astrophysics, "Exotic Physics"(rare events, dark matter), Medical Imaging, n Radiography, etc

Our ongoing R&D

- • Economic THGEM production technique & materials e.g. CIRLEX (polyimide), TEFLON, KEVLAR, CERAMICs etc.
- •Timing/localization with particle beams
- •2-phase mode in noble gases & liquids (w BINP, YALE, Coimbra)
- •Cryogenic Gas Photomultiplier for LXeγ-Camera (w Nantes)
- • Search for saturated gain mode (with V. Peskov) important for single photons and MIPS
- •Neutron imaging detectors (with PTB, Milano, Soreq)
- Sampling elements in Digital Hadron Calorimetry (with Andy White/Arlington)

Electron Collection Efficiency

the efficiency to focus an electron into the THGEMmethodology

Pulse counting measurement:

- Based on single e⁻ pulses
- <u>Same</u> pc, lamp, gain and electronics, <u>different</u> e⁻ path.
- Comparing counting rate provides the fraction of single e events reaching THGEM bottom.

THGEM production methods

With mask, WeizmannEtch w mask + drillLarge rim

CuNice edge RIMdisplacement

No mask, Weizmann Drill + etch under the CuSmall and zero rim

With mask, Eltos, ItalyDrill +etch w maskLarge rim

CERN, Zero rim: drill + short etching to remove sharp edges from drilling.

Similar up charging observed in 3-GEMstabilization time 0.5-3 hour

THGEM operation –single THGEM

THGEM operation -- counting rate

