Development and Performance of Microbulk Micromegas Detectors

T. Papaevangelou¹, S. Andriamonje⁴, S. Aune¹, T. Dafni², G. Fanourakis³, E. Ferrer Ribas¹, J. Galán Lacarra², T. Geralis³, I. Giomataris¹, A. Gris⁴, F. Gunsing¹, F. J. Iguaz², I.G. Irastorza², R. De Oliveira⁴, K. Kousouris³, J. Morales², J.P. Mols¹, J. Ruz², A. Texeira⁴, A. Tomás²

> ¹IRFU, Centre d'Etudes de Saclay, Gif sur Yvette CEDEX, France ²Instituto de Física Nuclear y Altas Energías, Zaragoza, Spain ³Institute of Nuclear Physics, NCSR Demokritos, Athens, Greece ⁴European Organization for Nuclear Research (CERN), Geneva, Switzerland

1st International Conference on MicroPattern Gaseous Detectors, MPGD 2009, Kolympari - Crete, Greece

Micromegas development

Conventional Micromegas

The pillars are attached to the mesh or the readout plane. A supporting ring or frame is adjusting the mesh on top of the readout plane Typical dimensions: mesh thickness 5 µm, gap 50 µm

- All "Micromegas advantages" (material selection, (spatial resolution, field uniformity, stability...)
- \checkmark Good energy resolution (mesh quality)
- \checkmark Mesh can be replaced easily

Mesh not attached + support frame:

- Resolution limitations
- Dimension limitations / large detectors
- Large scale production
- × Curved surfaces

The pillars are constructed by chemical processing of a kapton foil, on which the mesh and to the readout plane are attached. *Mesh is a mask for the pillars!*

Typical mesh thickness 5 μm, gap 50/25 μm

The advantages of a bulk micromegas but with enhanced performance.

In addition: uniformity, clean materials, stability

- ✓ Energy resolution (<13% FWHM @ 6 keV)</p>
- Low intrinsic background & better particle recognition
- \checkmark Low mass detector
- ✓ Very flexible structure
- * Higher capacity
- Fabrication process still improving
- Fragility / mesh can not be replaced

Building a Microbulk

- Kapton foil (50 µm), both side Cu-coated
 (5 µm)
- Construction of readout strips/pads (photolithography)
- Attachment of a single-side Cu-coated kapton foil (25/5 µm)
- Construction of readout lines
- > Etching of kapton
- Vias construction
- > 2nd Layer of Cu-coated kapton
- Photochemical production of mesh holes
- Kapton etching
- > Cleaning

Mesh types

- A "standard for 50 µm gap:
 30 µm holes placed in 100 µm pitch
- Alternative: hexagonal arrangement for better optical transparency
- Pillars: Areas without holes
 & full etching underneath
 normal holes
 - \checkmark Less material / capacity

2D Readout schemes

- Square pads connected through 2 extra layers
- Combination of "strips" and pads connected through one extra layer:
 - Detector thickness ~80 µm
 - Simpler process
 - Charge distribution in x-y is determined by the hole geometry
- Possibility of more etching around holes

0 0 0 0 0	000	000.	0.00	000	0.0.0
0.000	000	0.0.0	000	000	000
0 0 0 0	000	000	0 0 0	0'0 0	
0.0.0	.0.00	0.00	00.00	000	000
0/0000	.0:0'0	000	0.0.0	000	000
0. 000	000	·0 · 0 · 0	o o de	0.0.0.	0.0.0.
0000	0.0.0	0.0.0.	.0000	000	000
0.0004	000.	000	0.0.0.	000	000
0:00.0	000.	000	000	5.0 O	000
0.0.0.0	000	000	0.00'	.0 0 0	000
0 0 0 0	0.0.0	0.00.	000	000/	098
0.0.00	000	6001	.000	· 0° 0 0	000
0 . 0 0 0	000	000	000	000	000
0 0 0 0.		00.0	0.0.0	000	0.000

Microbulk performance at

Rare event detection (CAST, NEXT)

- > Energy resolution
- > Low background
 - ✓ Particle recognition
 - ✓ Radiopurity
- > Time stability

Neutron x-section measurements (n_TOF)

- Low mass
- Radiation resistance
- Detector materials material have low neutron interaction X-sections

CAST microbulk energy resolution

CAST expected signal: 1-10 keV X-rays

Detector characteristics:

- ➢ 6x6 cm² active area
- 106×106 strips, 550 µm
 pitch
- 3 cm drift
- 5 µm mylar window with strongback
- 1.43 bar Ar 2.3%
 isobutane (non flammable)

⁵⁵Fe Calibration with Ar - 2.3% isobutane @ 1.43 bar Illumination of whole area from ~ 0.7 m distance FWHM @ 6 keV = 15.5 %

14

12

⁵⁵Fe Calibration with Ar – 5% isobutane @ 1 bar Collimated source to avoid border effects FWHM @ 6 keV = 11.5 %

Spatial resolution and stability

Y [mm]

No precise measurement of the spatial resolution of a microbulk...

However an indication:

Illumination of a lead foil with pinholes writing "AXION CAST" laying in front of the entrance window. The holes were made by hand with a common needle..

Gain evolution of a Microbulk installed at CAST during May-August 2009. There was no precise regulation of gas pressure or temperature

Robustness!

Low background

CAST is in phase II since 2005.

- Changing buffer gas density changes axion mass sensitivity
 - → new discovery potential for each setting.
- Alignment with the sun for ~1 hour per setting demands detector background ~0 counts/hour
- How the low background is achieved:
- > Offline analysis
 - Particle identification
 - Readout scheme
 - Energy resolution & short signal risetime
- Low radioactivity materials
- Shielding for external radiation (archeological Pb + Cu
 + Cd + Polyethylene + Nitrogen flushing). Compact size!

Ultra Low Background with Microbulks

- New microbulk detectors were tested @ CAST since Oct 2008. The background level of the new detector was initially good ~1×10⁻⁵ s⁻¹ keV⁻¹ cm⁻²
- The count rate appeared to drop with time, reaching an unexpected low level of ~2×10⁻⁷ s⁻¹ keV⁻¹ cm⁻² implying ~0.05 counts/hour for the energy range 1-7 keV
- Same behavior observed for 2 detectors. On going study.

> New possibilities for CAST!

More about Micromegas in CAST at <u>Javier Galan's talk</u>

NEXT: a gas Xenon neutrino TPC

Neutrinoless double beta decay: Precious information on neutrino properties (mass scale, Majorana/Dirac nature,...)

Use of a high pressure, gas Xe TPC:

Background reduction from event topology

<u>Observable:</u> the energy of the two β:

Continuum for the 2v

A narrow peak for the Ov

Good energy resolution is essential!!!

NEXT : Microbulk Micromegas studies

Tests at Zaragoza & Saclay with microbulk prototypes:

HVdrift

HVmesh

16 mm ф 100 mm

- Operation at high pressures
- Very good energy resolution

Test with ²⁴¹Am alpha source: 0.7% FWHM @ 5.4 MeV

Neutron flux monitors @ n_tof

An online neutron flux monitor is essential for cross-section measurements. Main demands:

- Minimize beam perturbation and induced background
- Cover a wide energy range
- Solution: a thin microbulk placed in the beam, equipped with appropriate converter (¹⁰B, ²³⁵U) deposited on the drift electrode

Detector first tests*

Neutron reaction product spectrum from ¹⁰B measured at n_TOF Use of the premixed gas of $Ar + CF_4 + C_4H_{10}$ allows to distinguish clearly the contribution of the two components (1.47 MeV alpha and 0.83 MeV ⁷Li) of the reaction products of the neutrons on ¹⁰B

Same spectra from a test @ GELINA facility

(*) S. Andriamonje & F. Gounsing

Neutron reaction product from ²³⁵U measured at n_TOF (the peak at ch. ~240 is due to the saturation of the flash-ADC).

Detector performance & prospects

During the first test the detector proved its potential to be used as neutron monitor

- Higher efficiency & accuracy than any system sample in the beam / detector off the beam
- Low mass in the beam
- Low cost

What other measurements could be done?

- A 2D readout microbulk can be build to be used for online beam profile monitoring
- X-Section & fission fragment angular distribution
- Fission TPC

Summary & Prospects

Microbulk technology is a state-of-theart development on Micromegas detectors offering:

- ✓ Advantages of Bulk Micromegas
 - > Uniformity
 - Flexible structures
 - > Stability
- ✓ Excellent energy resolution
- ✓ Low background
- ✓ Low mass

These characteristics are important for a wide range of experiments, from rare event detection to nuclear physics

Ongoing research on

- ✓ Resistive layers
- ✓ Capacitance reduction
- ✓ Optical transmission increase
- ✓ Further material decrease

Optimization of the manufacturing technique would allow standardized production.

- ✓ Large area detectors
- ✓ Mesh segmentation
 - Spark protection
 - > New "real" X-Y structure
- ✓ Mass production (?)