Motivation	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work

MicroHole & Strip Plate Based Photosensor Operating at HpXe

C.D.R. Azevedo ¹ J.F.C.A. Veloso ¹, C.A. Santos ¹, and J.M.F. dos Santos²

¹I3N - Physics Department, University of Aveiro

²GIAN - Physics Department, University of Coimbra

14/06/09

Motivation ●○○○	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work
Motivation				

• Microstructures operating at high pressure in gaseous detectors

- Hard x- and γ-rays detection
- Good position and energy resolutions
- Large areas detectors
- Low cost per detector
- Possible applications:
 - Dual phase detectors
 - Dark matter search
 - High pressure TPC
 - Nuclear Medical detectors
 - Other applications needing
 - High position resolution
 - High energy resolutions

Motivation ○●○○	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work
MicroHole &	Strip Plate (MHSP)			

- 2 Amplifications stages (GEM and MSP-like)
- High gains $\sim 10^4 10^5$
- Fair energy resolution 13.5% @ 5.9keV X-rays in Xe atmosphere
- High rate capability $> 0.5 MHz/mm^2$
- High pressure operation capability
- Position detection capability $\sigma \sim 130 \mu m$ (with resistive line)

ъ.

Motivation ○○●○	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work
MicroHole & Str Operation prir	rip Plate (MHSP) nciple			

- Radiation absorption and gas ionisation
- Electron drift to the MHSP V_t
- Hole focus and 1st multiplication stage (GEM-like) - V_{c,t}
- Anode recoil and 2nd multiplication stage (MSP-like) - V_{a,c}
- Maximum Gain decrease with the pressure slower than in Triple-GEM (dashed line)

[1] -F. D. Amaro, et al., JINST, 2006.

Motivation ○○○●	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work

MicroHole & Strip Plate-Csl Photosensor

Csl - Highest QE

- $QE_{(175 nm)} \approx 30\%$
- Easy to deposit (Thermal evaporation)
- Reflective photocathode
 - Higher QE when comparated to semi-transparents
 - Photolectrons extracted near to the holes
 - Decrease of drift time and

photoelectron losses

[2] - A. Breskin, et al., Nucl.Instr.andMeth.A(2000)

Motivation	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work
	0000000			

Detector Operation Principles

- γ photon absorption and primary electron cloud production
- Electron drift to the scintillation region
- Gas secondary scintillation and light amplification
- Light detection and photoelectron conversion
- Electron multiplication and recoil

Motivation	GSPC at HpXe ○●○○○○○○	Two photosensors face-to-face	Conclusions	Future Work	
Light gain and primary charge amplification V_{a}					

- Presence of a light gain
- The light gain increases with the pressure
- Almost the same total gain for different pressures (except 5 and 6 atm)

Motivation	GSPC at HpXe ○○●○○○○○	Two photosensors face-to-face	Conclusions	Future Work	
Light gain and primary charge amplification					

- Presence of a light gain
- The light gain increases with the pressure
- Almost the same total gain for different pressures (except 5 and 6 atm)

Motivation 0000	GSPC at HpXe ○○○●○○○○	Two photosensors face-to-face	Conclusions	Future Work
Photoelectro Method	n collection efficiency			

- Backscattering at Hp
- γ -ray - - HV CE = <u>Detected Photoelectrons</u> <u>Extracted Photoelectrons</u> HP Xe • $QE \times CE = \frac{Detected Photoelectrons (N_{fe})}{UV photons reaching photocathode (N_{fUV})}$ Absorption region - HV • $N_{TfUV} = \frac{\Delta V.e}{\epsilon_{UV} Q_2}$ Scintillation region Convertion region • $N_{fUV} = \Omega.A_{eff}.N_{TfUV}$ N_{feeje} = N_{fUV}.QE • $L = \frac{\text{Detected photoelectrons}(N_{\text{fe}})}{\text{Primary electron}(N_{\text{ep}})} = \frac{A_{\text{Scintillation}}}{A_{\text{Charge}}}$ ACharge • $CE = \frac{L}{N_{feeie}}$
 - $QE \times CE = \frac{L}{N_{fUV}}$

Motivation 0000	GSPC at HpXe ○○○○●○○○	Two photosensors face-to-face	Conclusions	Future Work
Photoelectron c Varying $V_{c,t}$	ollection efficiency			

Possibility to operate at high pressures

Motivation	GSPC at HpXe ○○○○○●○○	Two photosensors face-to-face	Conclusions	Future Work
Photoelectron c Varying $V_{a,c}$	ollection efficiency			

CE × QE almost constant with the pressure

Possibility to operate at high pressures

Motivation 0000	GSPC at HpXe ○○○○○○●○	Two photosensors face-to-face	Conclusions	Future Work
Spectra				

- Pulse-height distribution of 59.6 keV from the ²⁴¹ Am
- Low signal-noise ratio for 5 and 6 atm

Motivation 0000	GSPC at HpXe ○○○○○○○●	Two photosensors face-to-face	Conclusions	Future Work

Energy resolution

7.2% energy resolution at 3.2 atm for 59.6 keV γ-photons

Energy resolution degrades for p > 3.2 atm due to MHSP defects

- Energy resolution increases until p < 3.2 atm</p>
 - Due to the increase of the number of UV photons.

Motivation	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work
		0000		

Detector Operation Principles

- Increase the detected photon number
- Possibility to sum two signals amplitude for the same event
 - Increase the total gain
- Interaction position detection (orthogonal to the photosensors)
 - Implementation of correction algorithms

Motivation 0000	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work

Position detection

• $z = k \frac{A1 - A2}{A1 + A2}$

- Mesh position well defined
- Measured position almost independent of the detected energy
- Background reduction

Motivation 0000	GSPC at HpXe	Two photosensors face-to-face ○○●○	Conclusions	Future Work

Position detection

Detector with $0.5 \times 12 \text{ mm}$ slit - All events

1 atm
R² = 0,99556

 Max deviation: 341 μm

2 atm

- $R^2 = 0,99123$
- Max deviation: 498 μm

Motivation 0000	GSPC at HpXe	Two photosensors face-to-face ○○○●	Conclusions	Future Work

Energy resolution

- Marginal energy resolution
- Increase of the energy resolution with the preassure
- Spatial dimension of the primary electron cloud

Motivation	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work
Conclusions				

- Preliminary results shows good MHSP capabilities to operate at high pressure
 - $CE \times QE$ constant with the pressure
 - The high UV-photon production gives the possibility to operate at different pressures maintaining the same total gain.
- Photosensors operating face-to-face
 - Good linearity between measured and actual photon interaction position (deviations below 300 and 500 μm for 1 and 2 atm, respectively)
 - The achieved energy resolution is marginal, improves with higher Xe pressure

Motivation 0000	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work ●oo

Charge readout and position detection

Motivation	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work ○●○
Futuro impre				

Future improvements and work

- Continuing with the increasing of the Xe pressure
- Use of $Xe CH_4$ in order to improve the photoelectrons extraction
- Study of the scintillation light and collections efficiencies on Xe CH₄ mixtures
- Study of the transport and electron multiplication for the 2D-MHSP at high pressure
- First image and study of the position resolution as function as the pressure

Motivation	GSPC at HpXe	Two photosensors face-to-face	Conclusions	Future Work
				000

Thanks for your attention

