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@ Microstructures operating at high pressure in gaseous detectors

@ Hard x- and ~-rays detection

@ Good position and energy resolutions
@ Large areas detectors

@ Low cost per detector

@ Possible applications:
Dual phase detectors
Dark matter search
High pressure TPC
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Nuclear Medical detectors
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Other applications needing

@ High position resolution
@ High energy resolutions
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MicroHole & Strip Plate (MHSP)

@ 2 Amplifications stages (GEM and MSP-like)
@ High gains — ~ 10* — 10°

@ Fair energy resolution — 13.5% @ 5.9keV X-rays in Xe

atmosphere
@ High rate capability — > 0.5MHz/mm?
@ High pressure operation capability

@ Position detection capability — o ~ 130um (with resistive

line)
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MicroHole & Strip Plate (MHSP)
Operation principle
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MicroHole & Strip Plate-Csl Photosensor
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@ Csl - Highest QE
o OE(175 nm) ~ 30%

@ Easy to deposit (Thermal evaporation)

@ Reflective photocathode

@ Higher QE when comparated to
semi-transparents

@ Photolectrons extracted near to the
holes

@ Decrease of drift time and

photoelectron losses

[2] - A. Breskin, et al.,Nucl.Instr.andMeth.A(2000) [— S—



GSPC at HpXe
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Detector Operation Principles

Scintillation region

Convertion region

@ ~ photon absorption and primary electron cloud production
@ Electron drift to the scintillation region
@ Gas secondary scintillation and light amplification

@ Light detection and photoelectron conversion r_/m

@ Electron multiplication and recoil



GSPC at HpXe
@®000000

Light gain and primary charge amplification
Varying V;,
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@ Presence of a light gain
The light gain increases with the pressure [—

@ Almost the same total gain for different pressures (except 5 and 6 atm)
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GSPC at HpXe
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Light gain and primary charge amplification
Varying Va,c

Relative amplitude
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@ Presence of a light gain
@ The light gain increases with the pressure

@ Almost the same total gain for different pressures (except 5 and 6 atm)
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Photoelectron collection efficiency
Method
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Backscattering at Hp
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CE — Detected Photoelectrons -=-HV r\r ey

Extracted Photoelectrons
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Photoelectron collection efficiency
Varying V;,
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@ CE x QE almost constant with the pressure

@ Possibility to operate at high pressures
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Photoelectron collection efficiency
Varying Va,c
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@ Slight CE x QE increase with Vg
@ CE x QE almost constant with the pressure

@ Possibility to operate at high pressures



GSPC at HpXe
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Spectra

Relative amplitude

Energy (keV)

@ Pulse-height distribution of 59.6 keV from the 24! Am

@ Low signal-noise ratio for 5 and 6 atm o=
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Energy resolution
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@ 7.2% energy resolution at 3.2 atm for 59.6 keV ~-photons
@ Energy resolution degrades for p > 3.2 atm due to MHSP defects

[-_ L
@ Energy resolution increases until p < 3.2 atm

@ Due to the increase of the number of UV photons



Two photosensors face-to-face
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Detector Operation Principles

@ Increase the detected photon number

@ Possibility to sum two signals amplitude for the same event

@ Increase the total gain
@ Interaction position detection (orthogonal to the photosensors) f‘

@ Implementation of correction algorithms



Two photosensors face-to-face
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Position detection
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@ Mesh position well defined
@ Measured position almost independent of the detected energy

@ Background reduction




Two photosensors face-to-face
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Detector with 0.5 x 12 mm slit - All events
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Energy resolution
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Two photosensors face-to-face
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@ Marginal energy resolution
@ Increase of the energy resolution with the preassure
@ Spatial dimension of the primary electron cloud

8000



Conclusions

@ Preliminary results shows good MHSP capabilities to operate at high pressure
@ CE x QE constant with the pressure
@ The high UV-photon production gives the possibility to operate at different

pressures maintaining the same total gain.

@ Photosensors operating face-to-face

@ Good linearity between measured and actual photon interaction position
(deviations below 300 and 500 um for 1 and 2 atm, respectively)
@ The achieved energy resolution is marginal, improves with higher Xe

pressure



Charge readout and position detection
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COMPUTER
-Set time window

X
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Image reconstruction

to computer
through USB

Future Work
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Future improvements and work
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Continuing with the increasing of the Xe pressure
Use of Xe — CH, in order to improve the photoelectrons extraction
Study of the scintillation light and collections efficiencies on Xe — CH4 mixtures

Study of the transport and electron multiplication for the 2D-MHSP at high

pressure

First image and study of the position resolution as function as the pressure

d



Thanks for your attention
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