

Stéphan Aune, Jacques Ball, Piotr Konczykowski, Caroline Lahonde, Olivier Meunier, Franck Sabatié, Sébastien Procureur CEA-Saclay (SPhN & Sedi)

Outline

Introduction: Jefferson Lab and CLAS @ 12 GeV CEBAF Large Angle Detector simulations Spectrometer

- Optimization & characterization of the detector with Garfield
- Studies of the background rate with Geant4
- Tracking performance

Tests of prototypes

- Measurement of Lorentz angles up to 4.2 T field
- Results from cosmic rays

Conclusion and planning of the project

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Jefferson Lab today... and tomorrow

Continuous electron beam

- Energy from 0.8 to 6 GeV
- Duty factor 100%
- Beam polar ~85%
- Delivers 3 halls simultaneously

CD-3 passed last year Construction just started Beginning of operation: 2015

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

The 12 GeV project & CLAS12

Large physics program at 12 GeV:

Search for exotic mesons & origins of confinement (new Hall D) Physics of nuclei (partonic structure, interactions from QCD principles) Studies of the nucleon structure (in particular mapping of GPDs)

Hall B needs to be upgraded \rightarrow CLAS12 L=10³⁵ cm⁻²s⁻¹

Original design for Central Tracker: - Barrel: 4x2 polygons of Silicons (strips at ±3°) - Forward: 3x2 disks of Silicons (strips at ± 12°)

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Micromegas for CLAS12

Proposition from Saclay to replace a large part of Si with MM bulk detectors...

... but highly unfavourable conditions:

3 cylindrical double layers (Barrel) (X-Y strips at 0 and 90°)

3 flat double layers (Forward) (U-V strips at ±30°)

 $4m^2$ and $\sim 30k$ channels in total

 $X_0 = 0.24\%$ / layer

Decrease the drift distance Increase the electric field Use slow gas

- Forward: almost no transverse diffusion (B // E) \implies

 $\tan\theta \approx v \times B / E$

- Barrel: large Lorentz angle (5 T transverse field) \implies

Use gas with high diffusion

 \Rightarrow Garfield simulations to find the best working point (if any)

Thin bulk MM for CLAS12

IRFU

saclav

MPGD09, Kolympari, 14/06/2009

MM optimization (Barrel)

\rightarrow Studies made with Ne (large v), Xe (heavy & expensive), Ar mixtures \Rightarrow Ar

$$C_4 H_{10} \sim C_5 H_{12} \sim C_2 H_6$$

Chose Ar+10%C₄H₁₀

+ Similar studies for the Forward part \rightarrow Ne, CF₄

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

MM optimization (Barrel)

\rightarrow Studies of the resolution with the drift high voltage

Argon gas - Vmesh = 450V - pitch = 600 μ m - gaps = (2.0mm;100 μ m) - π @ 1 GeV & 90°

IRFU

saclay

Shift of reconstructed position

With these conditions, pre-amplifications starts at HV_d≈2000 V

HV_d=1700 V for safety

Thin bulk MM for CLAS12

2000

1500

1000

Again, separate simulations for the Forward

MPGD09, Kolympari, 14/06/2009

3000

2500

HV_{drift} [V]

Geant4 simulations

- → The main goal is to determine the background rate seen by the MM at the CLAS12 luminosity
 - Barrel: 2 double layers of Si + 3 double layers of cylindrical MM
 - Forward: 3 double layers of flat MM

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Geant4 simulations

 $\xrightarrow{\text{saclay}}$ Using 62,500 beam electrons (\Leftrightarrow 132 ns time window, very conservative):

Strip rates in MHz in the Barrel

Si	Layer 1	Layer 2	Layer 3	Layer 4
e-/e+	3.9	3.7	4.3	4.3
photon	30.5	22.0	25.7	20.0
hadron	1.6	1.3	1.7	1.5
total	36.2	27.0	31.9	26.0

MM	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6
e-/e+	1.27	2.73	1.14	2.92	1.70	3.68
photon	0.08	0.03	0.07	0.06	0.09	0.08
hadron	0.96	0.95	1.13	1.11	0.91	0.84
total	2.40	3.80	2.40	4.15	2.77	4.66

Strip rates in MHz in the Forward (Si in parenthesis)

	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6
e-/e+	7.6 (7.5)	4.7 (6.4)	4.7 (6.6)	4.0 (7.3)	4.0 (7.2)	3.6 (7.5)
photon	2.0 (13.9)	0.2 (11.3)	0.2 (9.5)	0.1 (8.3)	0.1 (7.1)	0.1 (5.7)
hadron	2.2 (1.6)	2.1 (1.5)	2.0 (1.4)	2.0 (1.4)	1.9 (1.4)	1.8 (1.3)
total	12.0 (23.1)	7.2 (19.3)	7.0 (17.7)	6.2 (17.1)	6.1 (15.8)	5.5 (14.6)

 \rightarrow Significantly smaller rates in MM than in Si, essentially due to photon rate \rightarrow A fortiori no problem for tracking (already proven for Silicon design)

Thin bulk MM for CLAS12

IRFU

MPGD09, Kolympari, 14/06/2009

\rightarrow performance estimated with Kalman Filter algorithm developed for CLAS12

 \Rightarrow Much better θ resolution, without any degradation on other variables

Thin bulk MM for CLAS12

IRFU

saclay

MPGD09, Kolympari, 14/06/2009

Measurement of Lorentz angle in high B field

Thin bulk MM for CLAS12

IRFU

œ

saclay

MPGD09, Kolympari, 14/06/2009

 Ar-iC4H10
 OLorentz

 Micromesh
 ~400V

 Strips
 ~40kV/cm

 This distance gives θ_{lorentz}

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Prototype characteristics

- Drift : Al-mylar
- Drift gap : 3.85mm
- 4*72 strips
- Pitch : 0.4mm
- Data acquisition : T2K electronics (FEC+FEM) + DAQ
- 90% Ar + 10% iC₄H₁₀

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Thin bulk MM for CLAS12

IRFU

saclay

MPGD09, Kolympari, 14/06/2009

S. Procureur

- 0 ×

Results on Lorentz angle

 \Rightarrow Good agreement with the simulation (and 1st measurement at such high B fields)

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Tests with cosmic rays

Thin bulk MM for CLAS12

IRFU

œ

saclay

MPGD09, Kolympari, 14/06/2009

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Flat vs curved Micromegas - 1

Very similar multiplicity (a little larger because of track angles)

Similar plateau with curved detector, though a little shorter

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

(Probably some misalignments wrt reference detectors... will do better soon with X-Y detectors)

⇒ Almost no performance differences between flat and curved detectors

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Transparency and efficiency

Effect of the drift field increase on the transparency and efficiency

 \Rightarrow Transparency is only around 40%, but only a few % effect on the efficiency

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Schedule

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Conclusion

 Report on the "Review of Micromegas Tracking Detectors for CLAS12" held May 7, 2009 @ JLab

...We find that the simulated performance for resolution, solid angle coverage and

efficiency will meet or exceed CLAS12 requirements

We see no major obstacles to construction of a successful central tracking system based on the presented conceptual design.

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Backup

Ion transparency-1

Thin bulk MM for CLAS12

Ion transparency-2

Ion transparency-3

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Energy resolution vs radius

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Increase electric field

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Use slow gas

 $\tan \theta_L = \frac{v(E,B) \times B}{E}$

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009

Flex cable noise studies

Thin bulk MM for CLAS12

MPGD09, Kolympari, 14/06/2009