MPGD2009, 12-15 June 2009, Kolympari, Crete, Greece

X-ray Polarimetry in Astrophysics with Gas Pixel Detectors

Fabio Muleri

IASF/INAF Rome (Italy)

on behalf of a larger team:

IASF/INAF-Rm: E. Costa, F. Lazzarotto, A. Rubini, P. Soffitta, et al.

INFN-Pisa: R. Bellazzini, A. Brez, M. Minuti, M. Pinchera, G. Spandre, et al.

Outline

- X-ray polarimetry in Astrophysics today
- The Gas Pixel Detector
- The X-ray facility @ IASF-Rm
- Measurements
- Future missions
- Conclusions

2

<u>ROCKET 1709</u> (Novick et al., 1972), P=(15.4 + 5.2)%, angle 156°+-10°

<u>OSO 8</u> (Weisskopf et al, 1978): P=(19.22 +- 0.92)%, angle 155°.8 +- 1°.4

<u>INTEGRAL</u> (Dean et al. 2008): P=(46+-10)%, 123° +-11° between 0.1-1 MeV, confirmed by IBIS (Forot et al., 2008)

3

1. Synchrotron emission

4

- 1. Synchrotron emission
- 2. Flow in the nebula

5

- 1. Synchrotron emission
- 2. Flow in the nebula
- 3. Acceleration mechanism

Quantum gravity with X-ray polarimetry

Gambini e Pullin (1999): within Loop Quantum Gravity, birefringence increasing with energy:

$$v_{\pm} = c \left[1 \pm \chi \left(\frac{E}{E_{QG}} \right)^n \right]$$
$$\Delta \phi(E) \simeq \chi \frac{D_{ly}}{hc} \frac{E^2}{E_{QG}} \simeq \chi E_{keV}^2 D_{ly}$$

- Kaaret (2004): $|\chi| < 10^{-4} (\Delta \phi < 0.3^{\circ});$
- Yi-Zhong Fan (2007): $|\chi| < 10^{-7}$ (polarization of the optical afterglow of GRB 020813 and GRB 021004);
- Maccione et al. (2008): $|\chi| < 10^{-9}$ (high energy polarization of the Crab Nebula);
- Mitrofanov (2003): $|\chi| < 10^{-14}$ (X-ray polarization of GRB 021206, ?).

7

Why X-ray polarimetry?

X-ray polarization can be obtain by means of:

- Emission Processes: accretion (non spherical scattering, reflection), synchrotron emission, etc.
- Radiative Transfer: matter in strong gravitational/magnetic field.

Why X-ray polarimetry?

X-ray polarization can be obtain by means of:

- Emission Processes: accretion (non spherical scattering, reflection), synchrotron emission, etc.
- Radiative Transfer: matter in strong gravitational/magnetic field.
 - PWN, PSR: Crab;
 - INS: XDINS, CCO, AXP, SGR
 - binary system with BH, HMXB, LMXB
 - RN: Sgr B2
 - AGN, Blazar
 - μ QSO
 - CV
 - GRB?
 - ...

9

Polarimetry requires good performances and tens of thousands of photons

Classical techniques (Bragg diffraction and Thompson/Compton scattering) can provide "good" performances but with very low efficiency.

Photoelectric polarimeters

Fabio Muleri

X-ray Polarimetry in Astrophysics with Gas Pixel Detector

11

Photoelectric effect

The Gas Pixel Detector

Costa et al. 2001, Bellazzini et al. 2006, 2007

Weight: only 50g !

Fabio Muleri

X-ray Polarimetry in Astrophysics with Gas Pixel Detector 13

The current prototype

The chip integrates more than 16.5 million transistors and has a 15 mm x 15 mm active area. It is composed of 105600 pixels organized in a honeycomb matrix with 50 μ m pitch.

Bellazzini et al. 2006

The current prototype - Characteristics

Area:	$15 \times 15 \text{ mm}^2$
Active area fill fraction:	92%
Window:	50 μm , beryllium
Mixture:	He 20% + DME 80%, 1 atm
Cell thickness:	1 cm
GEM material:	gold-coated kapton
GEM pitch:	$50 \ \mu m$
GEM holes diameters:	$30 \ \mu m$
GEM thickness	$50 \ \mu m$
Gain:	~ 500
Pixels:	300×352, hexagonal pattern
Pixel noise:	50 electrons ENC
Full-scale linear range:	30000 electrons
Peaking time:	3-10 μs , externally adjustable
Trigger mode:	internal, external or self-trigger
Self-trigger threshold:	3000 electrons (10% FS)
Pixel trigger mask:	individual
Read-out mode:	asynchronous or synchronous
Read-out clock:	up to 10 MHz
Frame rate:	up to 10 kHz in self-trigger mode
Parallel analog output buffers:	1, 8 or 16
Access to pixel content:	direct (single pixel) or serial (8-16 clusters, full matrix, region of interest)

Bellazzini et al. 2007

Performances - Real tracks

5.41 keV, He-DME mixture at 1 atm

The instrument provides the polarimetric information together with imaging, spectral and timing capabilities.

The X-ray facility @ IASF-Rm

Energy response of GPD

- Thomson Scattering source: continuum background, energy higher than ~ 5 keV.
- <u>Bragg diffraction source</u>: narrow line (FWHM~10 eV), high polarization, relatively high flux if line emission in accordance with the diffracting crystal is employed.

Bragg diffraction @ 45°

Bragg diffraction @ 45°

Different "efficiency" of diffraction for different polarization:

$$k = R_E^{\pi}/R_E^{\sigma}$$
 $\mathcal{P} = \frac{1-k}{1+k}$ $E = \frac{nhc}{2d\sin\theta}$

data from Henke et al., Atomic Data and Nuclear Data Tables 54, 181 1993

The components of the polarizer

- capillary plates with 10µm holes, thickness 0.4mm or 1.0mm: high collimation with limited size;
- The crystal;
- A central body on which the parts are mounted

Each crystal and capillary plate is mounted in an aluminium holder.

The prototype

Good performances with a low power X-ray tube (200 mW):

Diffraction	Incident radiation	E (keV)	FWHM (eV)	χ^2	$\theta_{\rm Bragg}$ (deg)	P	Rate (c/s)
Incoming and output $\frac{1}{40}$ collimat	ors						
Graphite, I order	Continuum	2.6105 ± 0.0020	193.6 ± 3.2	0.849	45.07	~ 0.98	0.66
Graphite, II order	Continuum	5.2261 ± 0.0018	220.1 ± 1.6	1.101	45.02	> 0.96	2.8
Output $\frac{1}{40}$ collimator							
Graphite, I order	Continuum	2.6109 = 0.0036	198.6 ± 4.7	1.096	45.07	> 0.95	3.5
Graphite, II order	Continuum	5.2269 = 0.0037	248.2 ± 2.6	0.926	45.01	> 0.94	16.8
Aluminum, I order	Calcium Ka line	3.6889 = 0.0024	200.1 ± 0.2	1.396	45.93	0.9938	140.1

Muleri et al. 2007

Muleri et. al. 2008

Incident radiation (X-ray tube)	E (keV)	Crystal	θ	\mathcal{P}
Polarized radiation				
Continuum	1.65	ADP ($NH_4H_2PO_4$, 101)	45°	$\sim \! 1.0$
Continuum	2.04	PET (C(CH ₂ OH) ₄ , 002)	45°	$\sim\!1.0$
L α Molybdenum (50 W)	2.293	Rhodium (001)	45.36°	0.9994
Continuum	2.61	Graphite (002)	45°	$\sim\!1.0$
$L\alpha$ Rhodium (50 W)	2.691	Germanium (111)	44.86°	0.9926
$K\alpha$ Calcium (200 mW)	3.692	Aluminum (111)	45.88°	0.9938
$K\alpha$ Titanium (50 W)	4.511	Fluorite CaF_2 (220)	45.37°	0.9994
K $lpha$ Manganese (Fe ⁵⁵ radioactive source, 5mCi in 2008-01)	5.899	Lithium Floride (220)	47.56°	0.8822
K α Copper (200 mV)	8.048	Germanium (333)	45.06°	0.9849
Unpolarized radiation				
Lα Molybdenum (50 W)	2.293			$\sim \! 0$
$L\alpha$ Rhodium (50 W)	2.691			$\sim \! 0$
$K\alpha$ Titanium (50 W)	4.511			$\sim \! 0$
K α Manganese (Fe ⁵⁵ radioactive source, 5mCi in 2008-01)	5.899			0
K β Manganese (Fe ⁵⁵ radioactive source, 5mCi in 2008-01)	6.490			0
K α Molybdenum (50 W)	17.479			$\sim \! 0$
$K\alpha$ Rhodium (50 W)	20.216	—		$\sim \! 0$

The facility

10 movements (8 motorized + 2 manual)

- XY mapping;
- angular reconstruction;
- inclined beams

XY mapping

Step 2.25 mm, 5x5 Measurements @ 4.5 keV (Ti X-ray tube and CaF₂ crystal)

Fabio Muleri

X-ray Polarimetry in Astrophysics with Gas Pixel Detector 31

XY mapping

Step 2.25 mm, 5x5 Measurements @ 4.5 keV (Ti X-ray tube and CaF₂ crystal)

Fabio Muleri

X-ray Polarimetry in Astrophysics with Gas Pixel Detector 32

Angular reconstruction

Rotation around the center of the detector

Future missions

- ✓ <u>ASI</u> approved the inclusion of an X-ray polarimeter, EXP², on-board the HXMT satellite;
- ✓ <u>ASI</u> founded the Phase A of POLARIX, a dedicated mission to the X-ray polarimetry;
- NASA/ESA/JAXA is founding the Phase A of IXO, a multi-purposes observatory which includes in the focal plane an X-ray polarimeter.

The Hard X-ray Modulation Telescope

Devoted to a survey in the Hard X-rays (20 - 250 keV), with only a fraction of time dedicated to pointed observations.

Its launch has been planned in the 2010-2011, but with the inclusion of the X-ray Polarimeter the launch probably will be moved at least to 2012.

Main Detector	Nal(TI)/Csl(Na) Phoswich
Total Detect Area	~5000 cm2
Energy Range	20-250 keV
Energy Resolution	~19% (@60keV)
Continuum Sensitivity	~3.0×10-7 ph cm-2 s-1 keV-1 ,or 0.5 mCrab (30@100keV,105s)
Field of View	5.7°x 5.7° (FWHM)
Source Location	≤1 arcmin
Angular Resolution	≤5 arcmin
Mass	~2500 kg (payload ~1100 kg)
Dimension	2.0×2.0×2.8 m3 (L×W×H)
Nominal Mission lifetime	2 – 3 years
Orbit	Altitude 550km, Inclination 43°
Attitude	Three-axis stabilized

EXP²: an Efficient X-ray Photoelectric Polarimeter for the HXMT mission

The Institutes currently involved are:

- IASF/INAF Rome;
- INFN Pisa;
- OAB/INAF Brera
- Università di Roma Tre

The polarimeter is designed to fit the specification of the HXMT launcher and bus:

- Two short focal length optics;
- Total mass: ~110 kg;
- Total power: ~40 W.

Soffitta et al. 2008

PolariX: An italian polarimetry mission

PolariX is one of the five missions selected by ASI within the small mission announcement of October 2007 with a budget of 50 M \in for the bus and the payload.

Phase A started in April and will end in December, when there will be a downselection to two missions to be launched between 2012 and 2014.

To reduce costs, developments and risks, the heritage of past missions will be employed in various aspects of the mission.

Costa et al. 2008

PolariX: An italian polarimetry mission

Three optics are already built and calibrated for the Jet-X mission which has never flown (same optics as XRT on board SWIFT):

- very low cost but high mass
- mandrels can be exploited to produce further low cost and low mass optics

Good (measured) performances: HEW=15 arcsec

Pathfinder missions: Main Characteristics

- Polarimetry: MDP~1% for 100ks of observation for 100 mCrab sources (1 Crab, 2.0 10⁻⁸ erg/s cm², 2-10 keV)
- Imaging: angular resolution <1', f.o.v. 22'x22'
- Spectral capability: $\frac{\Delta E}{E} = 0.2 \sqrt{\frac{6}{E}}$, energy band: 2 10 keV (but depends on gas mixture)
- **Timing**: 10 μs

Minimum Detectable Polarization at 99% C.L.

Fabio Muleri

X-ray Polarimetry in Astrophysics with Gas Pixel Detector 40

Relativistic effects on black hole emission

Dovciak, et al. (2008): standard thin disk (multitemperature BB) + Thomson scattering atmosphere (no absorption).

X-ray Polarimetry in Astrophysics with Gas Pixel Detector 4

Reflection Nebulae: the case of Sgr B2

Koyama et al (1996), Revnivtsev et al (2004):

- Kα del Fe neutro;
- Hard emissin

Reflection nebula: **outburst** from Sgr A*?

- τ~1, θ~80°, Γ~1.8;
- L_{sgr A*} (2-10 keV) ~ 5 10³⁸erg/s (LLAGN)

Thomson scattering: $P = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}$ Churazov et al (2002):

- Strongly polarized contiuum emission
- Unpolarized fluorescence lines.

Why other X-ray polarimeters beyond pathfinder?

<u>IXO</u>: an X-ray polarimeter in the focal plane with ~10% of dedicated time, very large optics ~14000(?) cm² @ 3 keV, f = 2000 cm, resolution ~5 arcsec

 39"

 36"

 33"

 30"

 27"

 24"

PSF

M87 Knot A: MDP~7% for T=200ks

Performances: 1% @ 1 mCrab and 100 ks (goal, current: 2%)

Conclusions

X-ray polarimetry is becoming real thanks to photoelectric devices, such as Gas Pixel Detector.

We developed a facility which allows its complete characterization with polarized and unpolarized photons.

Calibrations are on-going.

Pathfinders in a **few** years.

Polarimetry of galactic and extragalactic sources with pathfinders. MDP~1% for F=100 mCrab and T=100 ks

With IXO accessible even faint extragalactic sources.

MDP~1% for F=1 mCrab and T=100 ks