

Development of a large area VUV sensitive gas PMT with GEM/uPIC MPGD2009 Jun 12 2009

Hiroyuki Sekiya Kamioka, ICRR/IPMU, University of Tokyo

C.Ida, H.Kubo, S.Kurosawa, T.Tanimori Dep. of Physics, Kyoto University A.Yoshikawa, T.Yanagida, Y.Yokota IMRAM, Tohoku University K.Fukuda, S.Ishizu, N.Kawaguchi, T.Suyama Tokuyama Coporation

Contents

- Motivation
- VUV light source
- Setups of the detector
- Analog property
 - 1p.e. level pulse mode operation
- Digital property
 - Operation as a novel imaging detector
- Summary

Possible features of Gas Photomultipliers

Large Area
Position resolution
Low cost
Small Volume
Low background

Future Large Volume Detectors for Dark Matter/neutrino

Inside of the Super-K detector

Feedback Problems in photon detection

A.Breskin TIPP09@Tsukuba

Ion and photon feedbacks

Limit the stable high gain operation

- Many activities to overcome the feedbacks.
 - Gating
 - Ion defocusing by MHSP/COBRA

Hiroyuki Sekiya MPGD2009 Jun 12 2009@Crete GREECE

Blind reflection

CsI photocathode

• So far, easier than bialkari.

- Low Ion/visible photon induced electron emission probability
- Stable in dry air.
- Many possible applications(our targets)
 - Liq. Xe/Ar scintillators (λ <180nm)
 - Single phase detector (XMASS)
 - Tube type
 - Double phase detector
 - Both charge & photon detection
 - VUV Crystal scintillators
 - Like visible scintillators + PMT
 - PET
 - Color X-ray CT
 - Gamma Camera

UV scintillator

- We are developing Nd³⁺ doped fluoride crystals which emit VUV photons through 5d-4f transition.
- This time, we focused on LaF₃(Nd) as a low intensity light source to test the detector for 1p.e. level.

X-ray induced luminescence spectrum

$LaF_3(Nd) + a = light source$

 2cm size crystal covered with Teflon + 3kBq a from ²⁴¹Am

(HAMAMATSU)

Light Yields were measured with VUV sensitive PMT R8778

Developed for XMASS
 Quartz window
 UV enhanced bialkali

Quantum efficiency 30%@172nm \rightarrow LY 100 photons/5.5MeV α

µPIC + GEMs

- Many R&D efforts on CsI+MPGDs.
 - Cascade GEM / MHSP/ THGEM w/ rim and so on ex) NIM A 595(2008) 116 and its refs
- Our strategy is plasma-etched GEMs+µPIC
 - GEMs for ion blocking
 - µPIC for high gain / position resolution

Large Area µPIC & GEM

• Large Area MPGDs are already used in many applications. ex. Medical, Dark Matter search(NEWAGE)

30cmµ-PIC

28cmGEM

µPIC & GEM

 For the prototype detector, we adopted 10cm size MPGDs.

10cm μ-PIC

10cm GEM

Semitransparent Photocathode

- 5t MgF₂ window
- Al vapor deposition on 10mm edge.
- 34mm

 CsI vapor deposition

"The thickness is same as that of CsI PMTs" by Hamamatsu

Set up for analog properties

• 2 100 μ m-GEMs+ μ PIC with CsI photocathode • Ar+C₂H₆ (90 : 10) 1atm

Photon Signal

- Readout: µPIC 64 strips summed
- Amplified with CP581 preamp (1V/pC) Clearpluse co., ltd.

The gas gain 2.6×10^5 Detected number of photoelectrons $120\text{mV}/1\text{V} \times 1\text{pC}/(1.602 \times 10^{-19})/2.6 \times 10^5 = 2.9 \text{ p.e.}$

Spectrum

Agrees with QE curve and the luminescence spectrum

Hiroyuki Sekiya MPGD2009 Jun 12 2009@Crete GREECE

dλ

100

0 60 photo electron

Set up for imaging properties

- 2 50µm-GEMs+µPIC with CsI photocathode
- Ar+C₂H₆ (90 : 10) 1atm
- 256ch x 256ch readouts
- 2.6MBq ²⁴¹Am for high rate test

NIMA 513(2003) 94

1cm

Readout system

16ch sum AMP

Analog Sum

16ch sum AMP

ΗV

Cathode

Hiroyuki Sekiya MPGD2009 Jun 12 2009@Crete GREECE

FADC

Crystal Shape Reconstruction

- 18x21x20mm³ LaF₃(Nd) + 2.6MBq ²⁴¹Am
- High rate capability was confirmed.

Parallel composition

Diagonal composition

Image Expansion by Electric Fields

Lens Effect between the PC and the 1st GEM

 Large area MPGDs make the expansion possible and this effect may enhance the position resolution of Gas PMTs against the diffusion.

Summary

- A new VUV gas PMT with GEM/µPIC is being developed.
- Although the QE is still limited, 1 p.e. level signal is clearly detected.
- We also are developing VUV scintillators for new radiation imaging sensors which compensate the low detection efficiency of the gas detectors.
- With LaF₃(Nd), the imaging capability of the gas PMT was tested. It might have sub 1mm position resolution.
- Electric lens effect (expansion) was demonstrated thanks to the large area MPGDs.

両面Auメッキ

100µmLCP-GEM/SMASH

窒素中 耐圧 ~700V

注 アクリル越しの写真 窒素中 耐圧 ~650V Auメッキのときと同じ

