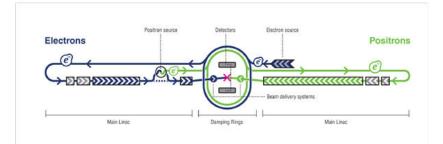
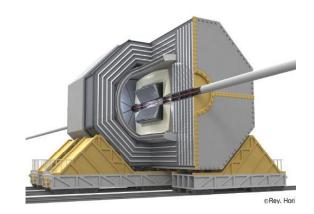
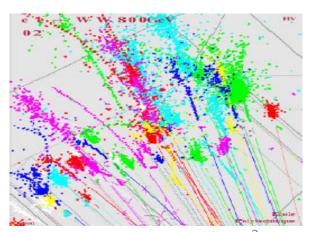


Laboratoire d'Annecy-le-Vieux de Physique des Particules

Beam test and X-ray study of a Micromegas DHCAL prototype

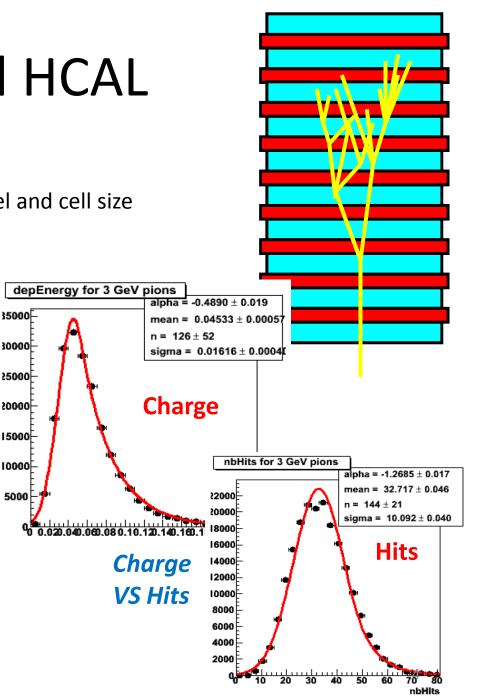

M. Chefdeville LAPP, Annecy MPGD2009, Kolympary, 12/06/2009


Outlook

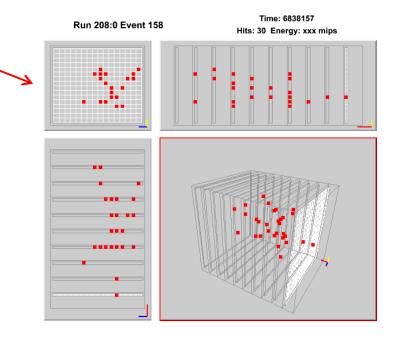

- Introduction
 - Hadronic calorimetry at the International Linear Collider
 - DHCAL R&D at LAPP
- Beam test results
 - Efficiency, hit multiplicity, shower profile
- Environmental study with an X-ray source
 Gain, gas flow, mixing ratio, pressure, temperature, gap
- Conclusion

Calorimetry at ILC

- International Linear Collider
 - e+/e- collisions at 500 GeV, 30 km long
 - Luminosity of 2.10³⁴ cm⁻²s⁻¹
 - 1 ms long bunch trains, 199 ms idle
 - Detailed study of EWSB, Higgs boson properties,
 SUSY particles, extra-dimension models ...
- 3 detector concepts with ≠ tracker and calorimeters
 ILD (TPC) SiD (Silicon tracker) 4th (Drift chamber)
 - SiD and ILD based on Particle Flow Approach (PFA)
 - Single particle shower imaging capability
 - Highly segmented and compact calorimeters
 - Resolution goal: 30 %/√E
- Hadronic Calorimeter design
 - Total absorber depth of 4.5 λ , 40 layers, 8 mm gap
 - Small cell sizes (down to 1 cm²!)
 - Thin sensitive layers (solid or gas)



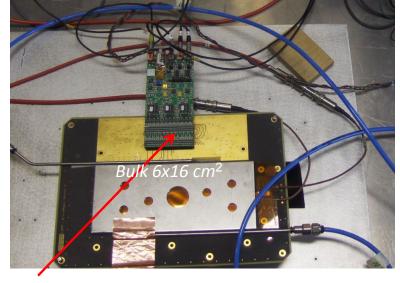
*Matching energy deposits in calorimeter with*³*tracks*


Analog and Digital HCAL

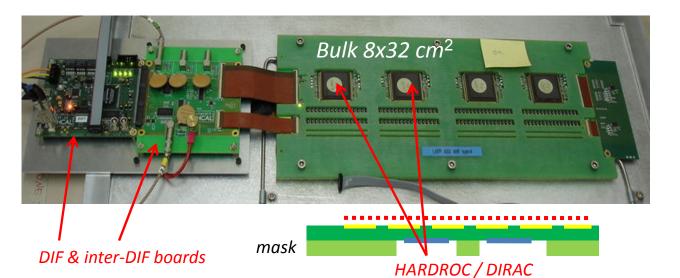
- Total instrumented area of 3000 m²!
 - Find a compromise between Nchannel and cell size
- Analog HCAL
 - Scintillating tiles of 5-10 cm²
 - Light readout with SiPM/MPPC
 - 1 m³ prototype already tested
- Digital HCAL
 - Gas layers with 1 cm² pads
 - 1 threshold per pad (single bit info.)
 - GEMs, RPCs, Micromegas
 - ILC oriented ASICs (DIRAC, HARDROC)
- What is best for energy resolution?
 - Measuring charge or counting hits?
 - Actively simulated

Detectors for a DHCAL

- Different types of gaseous detectors are currently under developments:
 - Glass Resistive Plate Chambers (GRPC):
 - Europe: IPNL (Lyon, France) and IHEP (Protvino, Russia)
 - USA: ANL (Argonne, USA)
 - Gaseous Electron Multiplier:
 - ANL (Argonne, USA)
 - MICRO MEsh GAseous Structure
 - LAPP (Annecy-le-Vieux, France)

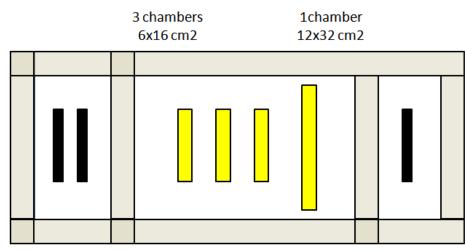

- R&D strategy:
 - Development of small prototypes and their characterization
 - Construction and test of 1 m² and then 1 m³ prototypes
 - Prototype performance comparison \rightarrow final design for DHCAL

DHCAL R&D at LAPP

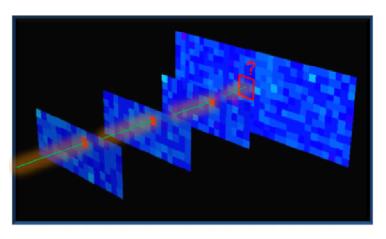

 What we are involved in: Large area detector (RD51/WG1), Bulk Micromegas Physics simulation (see J. Blaha poster) ASIC development (see R. Gaglione poster) Detector test:

3 beam tests since 2008, 2 more this year

- Prototypes: 1 cm² pads, 3 mm of Ar/iC₄H₁₀ 95/5
 - Analog readout prototypes for characterization (GASSIPLEX chips), 6x16, 12x32 cm²
 - Digital readout prototypes with embedded electronics (HARDROC/DIRAC chips), 8x32, 32x48 cm²

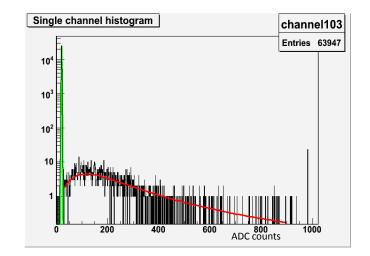


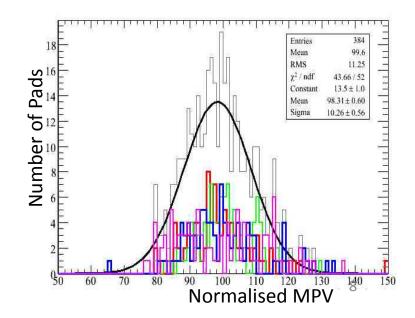
Active Sensor Unit = FE Electronics + PCB + Bulk + drift + cover = 8 mm


Possibility to chain detectors

Performance of Micromegas chambers

- November 2008 beam test
 - Stack of 4 chambers with 1 cm2 pads
 - Ar/iso 95/5 gas mixture
 Gas gain ~ 10000
 - Bulk with 128 μ m amplification gap
 - Gassiplex readout
 - CERN/SPS H2 beam line
 200 GeV muons and pions

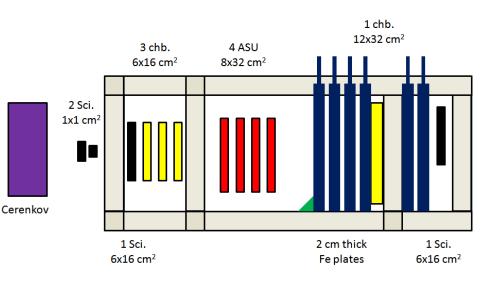



1 Scintillator

Performance of Micromegas chambers

- Charge distribution on all pads
 - Pedestals at 3 fC
 - MPV of Landau distribution
 - Most Probable Charge ~ 22 fC (110 ADC counts)
 - 10 % variations for largest chamber
- « Golden events »
 - 93-98 % efficiency to 200 GeV muons
- « Platinum events »
 - Hit multiplicity < 1.1 in all chambers

			Efficiency
		0	97,05 ± 0,07%
		1	98,54 ± 0,05%
Chamber Chamber		r 2	92,99 ± 0,10%
		r 3	96,17 ± 0,07%

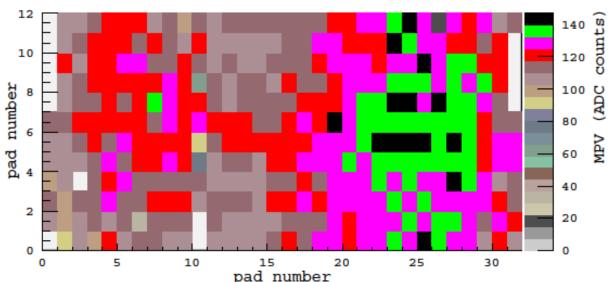


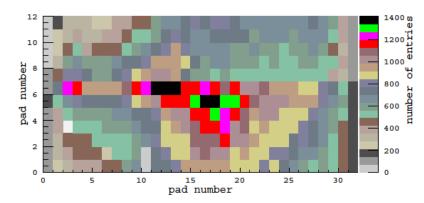
Performance of Micromegas chambers

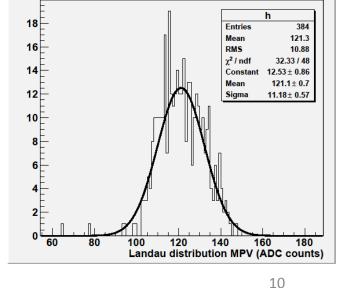
• May 20th - June 3rd 2009 test beam

no beam first week, extended till June 10th thanks to ALICE TOF

- CERN/PS T10 beam line
 - 1-6 GeV electrons, protons and pions
 - Cerenkov counter for electron tagging
 - Small crossed scintillators in front of the chambers OR 2 larger ones
- 1. Stack of 4 Gassiplex chambers: behaviour in EM showers
 - Shower transverse profiles in largest chamber (12x32 pads)
 - Longitudinal profile by varying the number of absorbers
- 2. 4 ASU with HARDROC readout: demonstrate proof of working

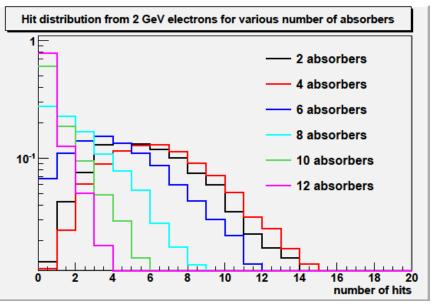





Large chamber response

- Measurement of energy & number of hits in large chamber
 - 4 scans for full chamber
 - Correct for response non-uniformity
 - Measure Landau distribution MPV of single hits (>35 ADC counts) on all pads
 - Trigger from coincidence of large scintillators
- Results
 - Mean MPV of 24 fC (121 ADC counts)
 - Variations of 8%

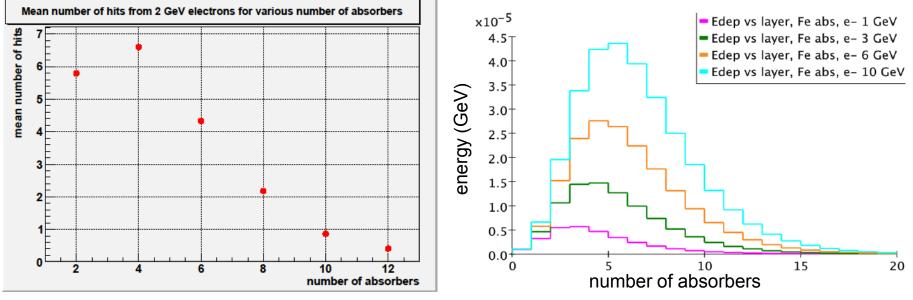
compatible with previous measurement





Hit distributions for 2 GeV eshower longitudinal profile

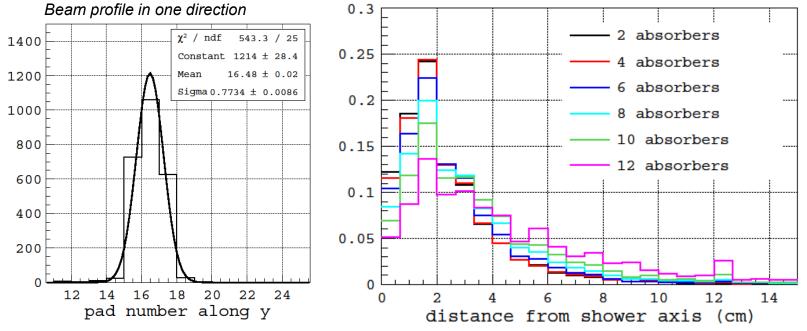
- Require at least one hit in 2 of the 3 small chambers (6x16 pads)
- Sum up hits in large chamber
- Take data with varying number of absorber plates
- Longitudinal distribution goes through max. between 2-4 plates
- Qualitative agreement with GEANT4 simulation results (see J. Blaha poster)


very preliminary

very preliminary

Hit distributions for 2 GeV eshower longitudinal profile

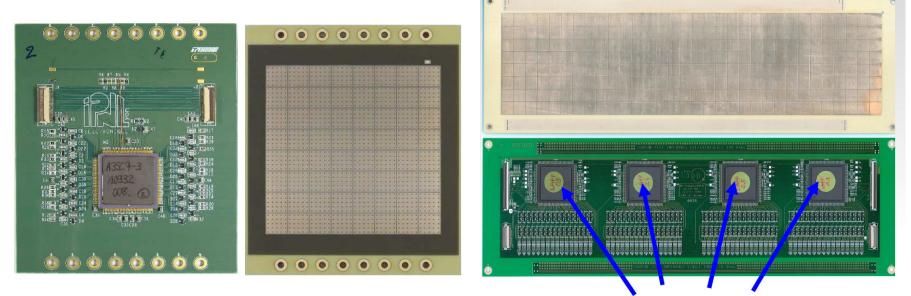
- Require at least one hit in three of the small chambers (6x16 pads)
- Sum up hits in large chamber
- Take data with varying number of absorber plates
- Longitudinal distribution goes through max. at 2-4 plates
- Qualitative agreement with GEANT4 simulation results, on-going analysis



very preliminary

Hit distributions for 2 GeV eshower radial profile

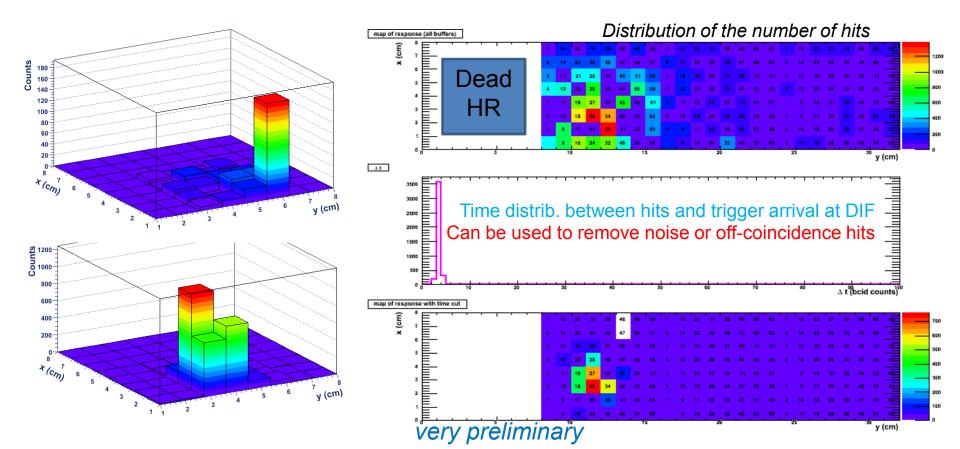
- Measure the hit profile in the large chamber without absorber to determine the shower axis
- Require at least one hit in three of the small chambers (6x16 pads)
- Calculate the distance from the profile center to each hit in the large chamber
- Radial distribution similar in all planes, with a mean radius of 1-2 cm
- Comparison with GEANT4 simulation results is on-going



Detectors with digital readout

- DIRAC (see R.Gaglione poster)
 - Developed at IPNL, Lyon & LAPP, Annecy
 - 64 channels
 - Self-triggered
 - 3 thresholds

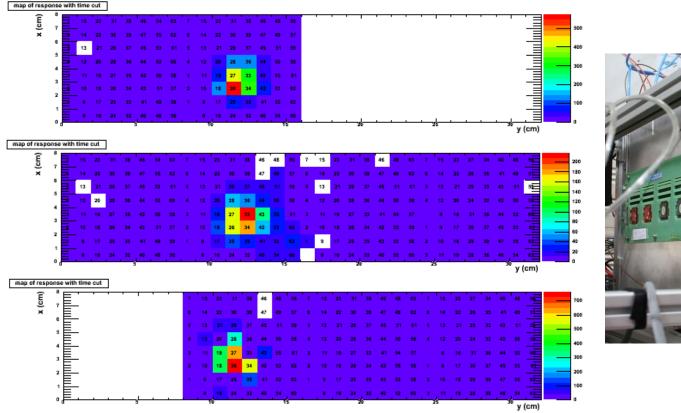
- HARDROC
 - Developed at LAL, Orsay
 - 64 channels, 4 HR / ASU
 - Self-triggered
 - 2 thresholds



4 HARDROC for 8x32 pads

What is best for a Micromegas DHCAL? Measure performance (efficiency, multiplicity...) first

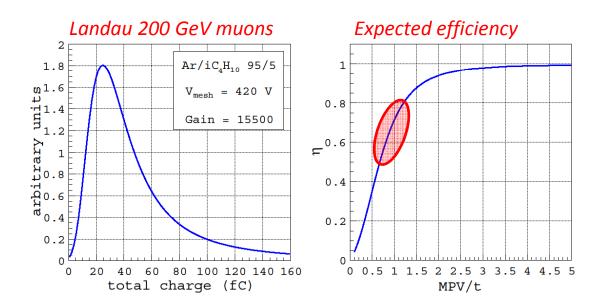
First tests in a beam


- Nov. 08: DIRAC
 - Profile of a 200 GeV pion beam
 - One prototype built so far
 - Need more to assess performances
- May-June 09: HARDROC
 - 4 ASU with various number of working HRs
 - Exposed to 2 GeV electrons and hadrons
 - Trigger signal from X-Scintillators delayed by 1 μs

First tests in a beam

Results

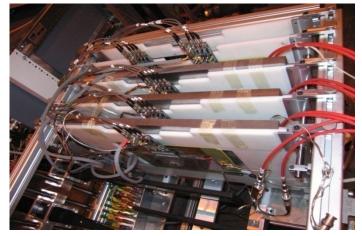
- 3 of the 4 ASU worked
- Each hit has a time stamp that will be used for event reconstruction
- Analysis is on-going: look for "golden" and "platinum" events and determine efficiency and multiplicity

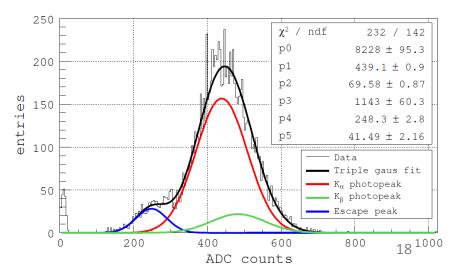


very preliminary

Environmental study

- Digital readout ASIC have a threshold of about 20 fC which is about the most probable charge arriving at a pad
- Efficiency should be rather low (70 %) and could change with time (as gas gain changes) which could degrade the calorimeter performance

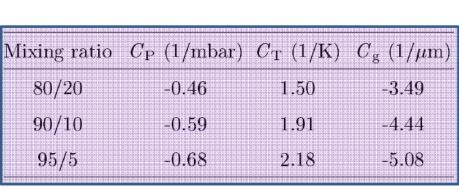

Efficiency sensitivity to changes in various parameters should be known

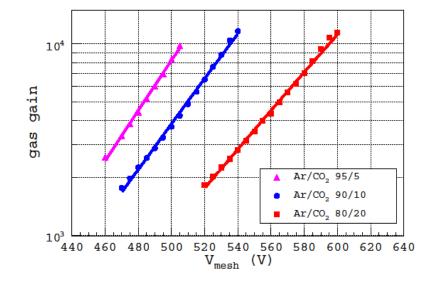

- Study effect of various variables on gain
 - Gas variables: gas flow, mixing ratio
 - Ambient variables: pressure, temperature
 - Amplification gap
- Two studies:
 - Environmental study: G(t), P(t), T(t)
 - G(V), lot to be learnt from gain curve too!
- Experimental setup:
 - Gas system:
 - 2 bottles of Ar and CO₂ mass flow controllers (1% accuracy) rotameters, chamber stack and bubblers
 - Readout of mesh (⁵⁵Fe) signals:
 ORTEC preamplifier + ampli/shaper
 12 bits ADC
 - Slow control:

Pressure and temperature gauges

Experimental set-up

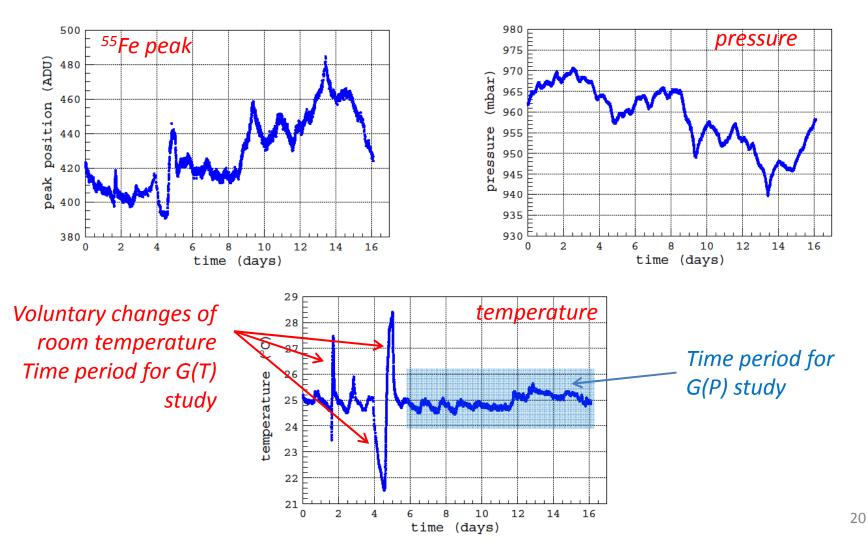
One chamber of the stack is used

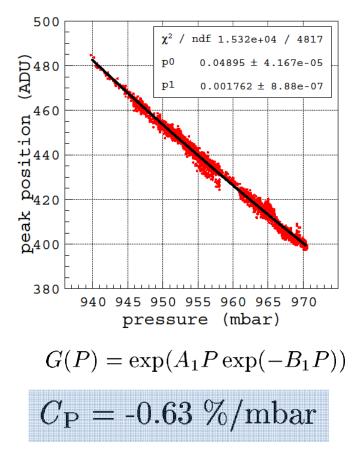

Gas gain model & gain curve fit


 Using Rose and Korff parametrization of the Townsend coefficient:

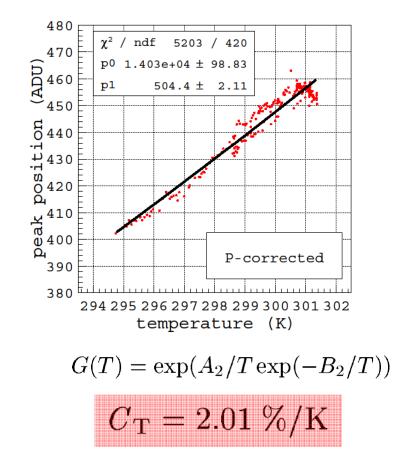
$$\alpha/n = A_0 \exp(-B_0 n/E) \qquad n = \frac{N_A I}{RT}$$
$$G = \exp\left(\frac{APg}{T} \exp(-\frac{BPg}{TV})\right)$$

• Gain sensitivity to P, T and g variations: $\frac{\Delta G}{G} = C_{\rm P}\Delta P + C_{\rm T}\Delta T + C_{\rm g}\Delta g$


$$C_{\rm P} = \frac{1}{G} \cdot \frac{\partial G}{\partial P} = \exp(-\frac{BPg}{TV}) \cdot (\frac{Ag}{T} - \frac{ABPg^2}{T^2V})$$
$$C_{\rm T} = \frac{1}{G} \cdot \frac{\partial G}{\partial T} = \exp(-\frac{BPg}{TV}) \cdot (\frac{APg}{T^2} - \frac{ABP^2g^2}{T^3V})$$
$$C_{\rm g} = \frac{1}{G} \cdot \frac{\partial G}{\partial g} = \exp(-\frac{BPg}{TV}) \cdot (\frac{AP}{T} - \frac{ABgP^2}{T^2V})$$

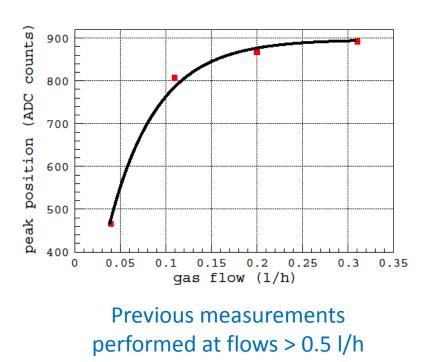

Measurements

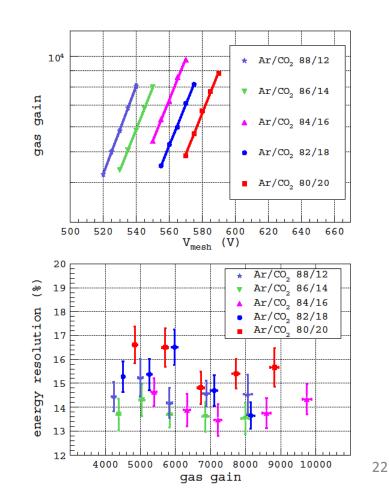
• Gain, pressure and temperature as a function of time


Pressure and temperature

 Peak and pressure allow for ΔT of 1 K

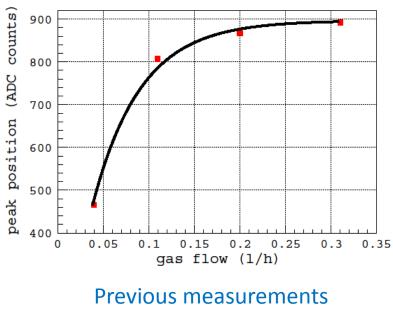
Compatible with gain curve: -0.46 %/mbar


• Pressure corrected peak and temperature

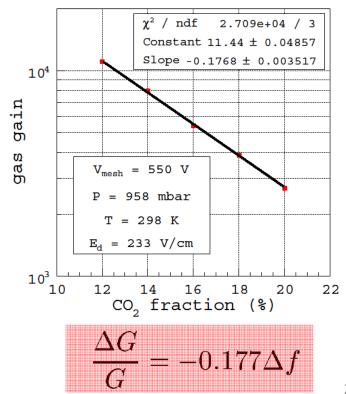

Compatible with gain curve: 1.50 %/K²¹

Gas parameters

- Effect of gas flow
 - four chambers in parallel
 - Total volume of 0.2 l
- Saturation for flow > 0.2 l/h
 - = 1 chamber volume / hour
 - Probably e- attachment
 - Should improve gas tightness



- Ar/CO₂ mixing ratio
 - Gain decreases with CO₂ fraction
 - Gain curves at various concentrations
 (Get energy resolution for free)


Gas parameters

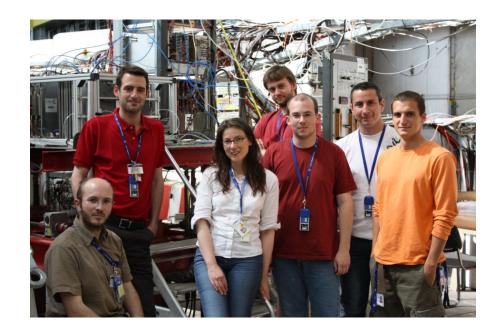
- Effect of gas flow
 - four chambers in parallel
 - Total volume of 0.2 l
- Saturation for flow > 0.2 l/h
 - = 1 chamber volume / hour
 - Probably e- attachment
 - Should improve gas tightness

performed at flows > 0.5 l/h

- Ar/CO₂ mixing ratio
 - Gain decreases with CO₂ fraction
 - Gain curves at various concentrations (Get energy resolution for free)
- Look at gain at given mesh voltage

Conclusion

- R&D on Micromegas DHCAL very active
 - Performance with analog prototypes promising
 - First results with digital prototypes encouraging
 - Also produce some results useful for other MPGDs:


$$\frac{\Delta G}{G} \sim -(0.5 - 0.6) \% \ \Delta P + (1.5 - 2.0) \% \ \Delta T - 3.5 \% \ \Delta g - 17.7 \% \ \Delta f$$

ΔP in mbar, ΔT in K, Δg in μm and Δf in % of CO_2

- Future plans:
 - Construction and test of larger area detectors
 - 2009: 32x48 cm² ASU with DIRAC or HARDROC
 - 2010: 1 m² prototype from 6 ASUs

Acknowledgements

Catherine Adloff Jan Blaha Sébastien Cap Alexandre Dalmaz Cyril Drancourt Ambroise Espagilière **Renaud Gaglione Raphael Gallet Nicolas Geffroy Claude Girard** Jean Jacquemier Yannis Karyotakis **Nicolas Lafaye Fabrice Peltier** Julie Prast **Guillaume Vouters**

