Samuel DUVAL (PhD. Student)

Research group T. Oger ^a, E. Morteau ^a, H. Carduner ^a, P. Leray ^a, J-S. Stutzmann ^a, J-P Cussonneau ^a, J. Lamblin ^a, D. Thers ^a and A. Breskin ^b

> ^a Subatech, Ecole des Mines, IN2P3-CNRS, and Université de Nantes, 44307 Nantes, France ^b Departement of Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

> > MPGD 2009, Kolympari, Crete, Greece

Outline

- **1. "3** *γ* imaging"
- **2. XEMIS 1 : Compton Telescope prototype**
- 3. XEMIS 2 : demonstrator for small animal imaging
- 4. A large cryogenic UV-GPM

Nuclear medical imaging (PET)

PET crystal ring = PMT + crystals coupled

Quantification is a real challenge in medical imaging

3γ imaging

Simulation results of « 3y imaging »

for small animal imaging

 μ PET (LSO) for LOR measurement Ø = 26 cm, FOV = 7,6 mm Energy and spatial resolution inputs: $\sigma_E = 6 \% @ 1 \text{ MEV}$ (E. Aprile, NIMA 480, 2002) $\sigma_{xv} = 1 \text{ mm}$, $\sigma_z = 100 \text{ µm}$

(C. Grignon, PhD thesis, 2007)

Excitation	Ionization	
$Xe + e^{-} \rightarrow Xe^{*} + e^{-}$ $Xe^{*} + 2Xe \rightarrow Xe_{2}^{*} + Xe$ $Xe_{2}^{*} \rightarrow 2Xe + hv$ 178 nm	$Xe + e^{-} \rightarrow Xe^{+} + 2e^{-}$ $Xe^{+} + 2Xe \rightarrow Xe_{2}^{+} + Xe$ $Xe_{2}^{+} + e^{-} \rightarrow Xe_{2}^{*}$ $Xe_{2}^{*} \rightarrow 2Xe + hv$	Fast medium (~LSO) Scintillation decays : $\tau_f = 2.2 \text{ ns}$ (singlet) 4%, $\tau_s = 27 \text{ ns}$ (triplet) 79%, $\tau_r = 45 \text{ ns}$ (recombination) 17%

Outline

1. "3 *γ* imaging"

2. XEMIS1 Compton Telescope prototype

3. XEMIS 2 demonstrator

4. A large cryogenic UV-GPM

XEMIS (XEnon Medical Imaging System)

Phase diagram of xenon¹

Cryostat cut-away view

Requirements :

- High xenon purity (< 1ppb H₂0 and O₂)
- Stable cryogenic device

Liquid xenon Compton Telescope set-up

Liquid-xenon time-projection chamber

E & (x, y, z) measurements of each interaction

Ionization signal

Electron life length

Micromegas transparency into LXe

Outline

- **1. "3** *γ* imaging"
- 2. XEMIS1 Compton Telescope prototype
- 3. XEMIS 2 demonstrator
- 4. A large cryogenic UV-GPM

XEMIS 2

Cylindrical LXe TPC (Ø = 25 cm)

XEMIS 2 Geometry simulated

with Geant4 and VUV transport MC Code (no Rayleigh, $\lambda_{att} = 1m$)

Simulation with 81 "1 inch PMT"

PMT characteristics

- QE = 35%
- t_w = 1,2 mm (SiO₂ window thickness)
- sensitive area = 40%

Simulation of 10000 γ-rays of 1,157 MeV

A trigger is possible with PMT

Triggering with PMTs

- Challenging with background
- Edge effects
- Dead area
- Non-homogeneous depth response

A possible non-position dependant device...

Outline

- **1. "3** *γ* imaging"
- 2. XEMIS1 Compton Telescope prototype
- 3. XEMIS 2 demonstrator
- 4. A large cryogenic UV-GPM

Gaseous PhotoMultiplier prototype

Schematic drawing of the GPM set-up

A large cryogenic UV-GPM

PM QE is better than QE of GPM but ...

MgF₂ is more transparent to VUV light than SiO₂

Results of simulations :

- No dead area : homogeneity
- Less position dependant

GPM characteristics :

- QE = 30%
- t_w = 0,5 mm (*MgF*₂ window thickness)

Simulation of 10000 y-rays of 1,157 MeV

A possible "local triggering"

Opening research volume for the Compton Sequence

Liquid xenon Х Ζ V Triggering efficiency 100 number of events (%) 60 20 2 3 4 5 6 7 research zone radius (cm) R 8 9 10 3

Triggered event 2 firsts hits inside cylinder

First experimental R&D tests

Ne,5%CH₄ @ normal P and T

Under evaluation

Prospects

Schematic view of the cryogenic UV photon detector set-up

- Photocathode deposition at the Weizmann Institute of Science
- Characterization in normal conditions
- Immersion in liquid-xenon (XEMIS1)

GPM into XEMIS 1

Thank you !