Linear Collider Physics and Detectors

ΜΡGD2009, Κολυμβάρι, Κρήτη

Klaus Desch Universität Bonn 12/06/2009

- Physics motivation
- Detector challenges
- Detector concepts
- Component R&D

Physics

motivation

Physics Motivation

"It is fundamental to complement the results of the LHC with measurements at a linear collider" CERN council 14/06/2006 e^{+ • •} e⁻ Why?

Key features of e^+e^- ("what does not work with hadron collisions")

- precisely defined and known centre-of-mass energy of hard process (machine requirement: low beam energy spread, low beamstrahlung)
- tunable centre-of-mass energy (machine requirement: flexibility, high luminosity)
- polarized beams

(machine requirement: do it! - detectors: measure it!)

- clean, fully reconstructable events (also hadronic f.s.) (detector requirement: jet (flavour), lepton reconstruction, full hermeticity)
- moderate backgrounds \rightarrow no trigger \rightarrow unbiased physics (detector requirement)

Move significantly beyond LHC capabilities to explore the Terascale

Physics Motivation - Higgs unbiased!

Anchor of LC Higgs physics (why LC Higgs physics is qualitatively different from LHC)

Full detector simulation & Analysis

- select di-lepton events
 consistent with Z→ee/µµ
- calculate recoil mass: $m_{\rm H}^2 = (p_{\ell\ell} p_{\rm initial})^2$

model independent, decay-mode independent

Physics Motivation - Scanning thresholds

Ultraprecise mass determinations from threshold scans

Top quark mass with ~100 MeV precision

Chargino production at threshold [Martyn]

mainly a challenge for machine + theory

Physics Motivation - New physics

Detector

challenges

Detector challenges

$$\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-) = (\hbar c)^2 \frac{4\pi \alpha^2}{3s} = \frac{87 \text{ nb}}{s (\text{GeV}^2)} = 87 \text{ fb at } 1 \text{ TeV}$$

<u>Remark:</u>

e⁺e⁻ cross section at \sqrt{s} > 500 GeV are small o (10-100 fb), multi-fermion processes smaller

500 fb⁻¹ at 500 GeV are "only"

- 40000 HZ events
- 2500 HZ, Z→II events
- 5000 smoun (m=140) pairs
- 200 HHZ events

By far most measurements at LC will be statistics-limited

Consequences:

Luminosity requirement of 2×10³⁴ is a lower limit!

Must (and can) reconstruct all (including) hadronic final states \rightarrow detector

Detector challenges: ILC environment

Beam time structure

Bunch spacing ~ 300 ns

One readout frame has to integrate many bunch crossings for VTX, TPC

950 µs

2820 bunches

Background rates (beamstrahlung)

0.04 hits/mm²/BX in the VTX inner layer (1.5 cm) (or 400 hits/BX in the inner layer)

Occupancy of ~10% per bunchtrain

- read 20 frames per bunchtrain (1 ms) or:
- internal storage of ~ 20 frames
 Radiation Hard up to 360 kRad
 and 10¹² n/cm² (10 years)

199 ms

950 µs

Detector challenges: Tracking

momentum resolution counts!

 \rightarrow optimize tracker radius, B-field, single point resolution, material

Pixel Vertex Detector

<u>Goals:</u>

Impact parameter resolution

 $\sigma(IP)_{r_{-\phi}} = 5\mu m \oplus \frac{10\mu m}{p(GeV/c) \sin^{3/2}\theta}$

- Excellent point resolution < 4
 Pixel size 20-30 µm
- Low material budget
 0.1% X₀ per layer
- close to IP (15 mm)
- stand-alone tracking

Detector challenges: Vertex reconstruction (ambitious) goal: reconstruct sub-dominant (few%) H→cc decay probably only direct measurement of H-up-type quark coupling!

Detector challenges: Jet reconstruction

a)

100

Dist

Need to measure sub-fb cross sections in multi-jet final states!

e.g. ZHH→ qqbbbb

not a question of better or worse but a question of do or don't

Two approaches:

Particle Flow
 Compensating Caolrimetry

Detector challenges: Exclusive reconstruction

Jet energy resolution is not all Sub-structure of jets important e.g. for tau lepton reconstruction:

Sometimes it's not enough to know that it was a tau

Need to reconstruct its decay mode to measure its polarisation

Tau-Leptons challenge the whole detector!

Detector challenges: Summary

- ILC environment allows for a huge step in precision
- Radiation, Occupancy much relaxed w.r.t. LHC
- Physics demands to fully reconstruct both leptonic + hadronic events

Major guidelines for a ILC detector concept:

- 1. Jet reconstruction
- 2. Robust + precise charged particle tracking
- 3. Very precise vertex detector

Detector

concepts

Detector concepts - Overview

ILD - merger of LDC (ex-TESLA) and GLD Particle flow + large TPC

SiD

Particle flow + all silicon tracker

4th

6

"Doing it all differently..."

no Particle flow - DREAM compensating calo. Large Drift chamber dual solenoid

Detector concepts - Overview

Detector	4 th	ILD	SiD
Premise	Dual Readout	PFA + TPC	PFA + Si Trkr
Vertex Detector	5-layer silicon pixel	5/6-layer silicon pixel	5-layer silicon pixel
Tracking	CluCou drift chamber	MPGD-TPC + Si	Silicon strips
EM calorimeter	BGO	Silicon-Tungsten	Silicon-Tungsten
Hadron Calorimeter	Dual/triple-readout Cu-scint/clear fibers	Analog- scintillator	Digital Steel - RPC
Solenoid	3.5 Tesla	3.5 Tesla	5 Tesla
Muon	Iron free dual solenoid with He drift tubes	Instrumented flux return	Instrumented flux return RPC
Forward Cal	Si-W	Si-W	Si-W

Note: those are "baseline" choices

technologies not finally selected!

[M.Demarteau]

Particle Flow

What is the best way to measure the energy of a jet?

<u>Classical:</u> purely calorimetric typically 30% e.m. and 70% had. energy for $\Delta E/E(em) = 10\%/\sqrt{E}$ and $\Delta E/E(had) = 50\%/\sqrt{E}$ $\rightarrow \Delta E/E(jet) \sim 45\%/\sqrt{E}$

→ could do better than that with compensation 4th concept

 <u>PFlow:</u> combine tracking and calorimetry optimally typically 60% charged, 30% em(neut), 10% had(neut) need to separate charged from neutral in calorimeter! momentum resolution negligible at ILC energies
 → ΔE/E(jet) ~ 20%/√E in principle (for ideal separation)
 → ΔE/E(jet) ~ 30%/√E as a realistic goal
 PFlow has further advantages: tau reconstruction

leptons in jets multi-jet separation (jet algorithms...)

Particle Flow - How does it work?

[Behnke]

Particle Flow - Performance in ILD

*****Benchmarked using:

- $Z \rightarrow u\overline{u}, dd, s\overline{s}$ decays at rest
- |cosθ|<0.7

NOTE:

- σ_E = rms₉₀
- In terms of statistical power rms₉₀ ×1.1 ≈ Gaussian equiv.
- No strong angular dependence down to cos0~0.975

[Thomson]

Alternative: Dual Readout Calorimetry (DREAM)

Concept: achieve seperated (or separable) measurements of EM and Had component of a hadronic shower

- crystals for EM section
- fibre ("Spaghetti") sampling HCAL with 2 different fibres:

Cerenkov (clear) fibres sensitive mainly to EM component Scintillating fibres sensitive to total ionising (EM+HAD) component Neutron component from time history measurement

Alternative: Dual Readout Calorimetry (DREAM)

Particle	Gaussian resolution	σ_E/E
species	stochastic term	constant term
electrons	$1.7\%/E^{0.48}$	$\oplus 0.1\%$
pions	$19.1\%/E^{0.43}$	$\oplus \ 0.3\%$
jets	$30.8\%/\sqrt{E}$	$\oplus 1.4\%$

Good jet energy resolution possible No or poor segmentation, in particular in depth

Tracking: Si vs. Gas

$$\sigma(\frac{1}{p_T}) \propto \frac{\sigma_{spacial}}{\sqrt{N_{sample}}} \cdot \frac{1}{B \cdot L^2}$$

Gaseous tracking

or Silicon ??

Time Projection Chamber (TPC)

- 200 space points (3D) continuous tracking, pattern recognition
- pattern recognition
 low mass easier to achieve, especially in the barrel region

Silicon tracking

- better single point resolution
- fast detector (bunch identification)

Tracking: Material

looks similar "on paper"

- TPC in central region safe / endplate is the challenge
- remember X_0 history of LHC detectors

ILD: Gaseous Tracking(TPC) + Si envelope

Traditional TPC with MWPC: limited space resolution, No true 2D symmetry, ExB effects

 \Rightarrow use Micro-Pattern Gas Detectors (MPGD) ("micro" = 50-150 μ m)

LC TPC: R=2m L=4-5 m

Gas amplification

MicroMEGAS

GEM

Readout schemes: small pads (~1×4mm²) pixels (~100×100µm²)

Gaseous Tracking: Drift Chamber (4th)

Alternative approach for charged particle tracking in 4th concept Large drift chamber with dE/dx capability via cluster counting <u>Cluster timing</u>:

record the drift times of all individual ionization electrons collected on a sense wire → multi-GHz FADC needed

0

0.1

0.2

0.3

 $b [cm]^{0.5}$

0.4

Silicon Tracking

~100 m² Si Strips: Barrel single sided (r- ϕ); endcaps double sided Modular low mass sensors tile CF cylinders

~10 x 10 cm; 320 μ m thick; 25 μ m sense pitch; 50 μ m readout S/N > 20;

- < 5 µm hit resolution (prototype fabricated);
- Bump bonded readout with 2 KPiX chip; no hybrid
- KPiX measures amplitude and bunch # in ILC train

Pulsed Power: 20 µW/channel avg; ~600 W for 30 M channels; gas cooling

Vertex Detectors

Hybrid pixels a la LHC are not an option (material, cooling)

>monolithic technologies, various options studied (MAPS, CCD, DEPFET - maybe Gossip (not yet proposed...)

Target performance:

Single point resolution: < 3 μm

Material budget: ~ 0.1%X₀ / layer

Inner radius: ~ 15 mm

Component R&D

"Horizontal" R&D Collaborations

(I won't be complete here)

Detector concepts vs. Component R&D

→ try to do as much R&D as possible across different detector concepts

MPGDs in ILC Detectors

- <u>LC-TPC</u>: MPGD readout
- GEMs → T. Matsuda Sat, 11:35h
- Micromegas \rightarrow D. Attie Sat, 11:10h
- Micromegas + resistive foil \rightarrow M. Dixit Sun 11:05h
- -+ resisitve foil
- GEMs + Pixels \rightarrow J. Kaminski Sat, 12:00h
- Ingrids

<u>Digital HCAL</u>

- with GEM r/o \rightarrow A. White Fri, 16:40h
- with Micromegas r/o \rightarrow M. Chefdeville Fri 17:05h

<u>Vertex Detector</u> (using Gossip) (not yet proposed...)

will not cover those in detail...

Component R&D - PFlow Calorimter

CALICE collaboration: Calorimetry for Linear Collider Experiments

Goal: prepare realistic proposal for fine-grained PFlow calorimeters (ECAL + HCAL) by 2012

2 stages:

"Physics" prototypes: proof of principle validate simulation (Geant4 showers) validate reconstruction (PFlow algorithms)

"Engineering" prototpyes: address technical design issues compact mechanics integrated electronics

Stage 1 – various testbeam campaigns at DESY, CERN, Fermilab 2006-2009

now going into Stage 2

CALICE - 1st generation test beams

Setup at CERN

First shower profiles

CALICE - 2nd generation prototypes

Address integration issues - Realistic dead space - Cost

LC-TPC

Goal: prepare a realistic proposal for high-resolution TPC with MPGD readout by 2012

3 phases:

Demonstration phase - small prototypes

- ~done for pad readout - ongoing for Pixel-R/O (Timepix)

Consolidation phase - "Large Prototype" at EUDET facility at DESY - ongoing

Design phase - engineering design (endplate material, electronics integration,

cooling)

Component R&D - CLUCOU Drift Chamber

Alternative approach for charged particle tracking in 4th concept Large drift chamber with dE/dx capability via cluster counting <u>Cluster timing</u>:

record the drift times of all individual ionization electrons collected on a sense wire → multi-GHz FADC needed

0.3

Cluster Timing

38 µm

 $^{0.4}$ b [cm] $^{0.5}$

Component R&D - Resources & Manpower

- rather large world-wide effort for LC detector
- recently also CERN set up a group for a CLIC detector concept (based on ILC detector concepts and technologies)
- manpower critical, especially in US
- some important aspects not yet addressed, e.g. powering schemes
- not all possible synergies are exploited
 - \rightarrow common testbeam infrastructure for a "vertical" test
 - \rightarrow trans-concept software platform
 - → synergies with other experiments/projects, e.g. sLHC (example Gossip / Pixel-TPC ...)
- funding(!) in EU: improve infrastructure with next FP7 call

Timescales and Plans

2007

Call for

Letters

of Intent

2009

(done)

2012

Prepare (light) engineering design report

in step with machine

Move on towards Engineering design

Submission of LoI's

Iteration with IDAG

Evaluation in fall

Be technically ready Demonstrate that we can start if we may

Continue with critical R&D

ILC research director (S. Yamada)

Conclusions

- ILC (+CLIC) detector pose a challenge to detector development
- Detector LoIs exist and are being reviewed
- Now entering phase of (light) engineering design (on top of fundamental R&D
- MPGDs play an important role in many ILC subedectors

A typical LC event

precise reconstruction

is important!

this example:

- lack of statistics
 (only one Diskos found, but very low background)
- no good theory yet
 (noone understands what is written there)

fascinating...