

(Reactor) Neutrino Data Analysis (I)

Liangjian Wen

SUT-IHEP School of Neutrino Physics, Suranaree University of Technology, Thailand Feb 22-27, 2016

<u>Outline</u>

- Reactor \overline{v}_e Detection
- Natural radioactivity
- Cosmic rays and Cosmogenic Products
- Detector Design

Principles of experimental design and data analysis

- Detector Response and Calibration
- Event Selection
- Backgrounds
- Efficiencies and Uncertainties

 $\overline{\nu}_{\rm e}$ Neutrino Data Analysis

χ² analysis

Get final result

Reactor \overline{v}_e Detection

How Neutrinos are produced in reactors?

$$_{92}^{235}U + n \rightarrow X_1 + X_2 + 2n$$

Stable nuclei with A most likely from fission

$$^{94}_{40}Zr$$
 $^{140}_{58}C\epsilon$

Together these have 98 protons and 136 neutrons

So, on average 6 n have to decay to 6 p to reach stable mater

A typical (light water pressurized) nuclear reactor

- Thermal power: 2.9 GW
- Electrical power: 0.9 GW
- Fuel:
 - -3.5% ²³⁵U in the form of UO₂

214 mm Ĵ

Region 1: 1.8 % enrichment

- 100t in total
- Rods: 4m long, 0.5 t each
- Services:
 - Every 12(18) months
 - Each service: ~ 1 month
 - New Fuel: 1/3 rods

Fission Rate in the Reactor

Sum of fission Energy → Total thermal power

$$W_{th} = \sum_{i} f_{i} e_{i} , \qquad F = \sum_{i} f_{i}$$

MC simulation can give reliably relative fission fraction f;/F

Absolute normalization factor(F) from measured total thermal

power

Isotope	E_{fi} , MeV/fission
$^{235}{ m U}$	201.92 ± 0.46
$^{238}\mathrm{U}$	205.52 ± 0.96
$^{239}\mathrm{Pu}$	209.99 ± 0.60
$^{241}\mathrm{Pu}$	213.60 ± 0.65

Kopeikin et al, Physics of Atomic Nuclei, Vol. 67, No. 10, 1892 (2004)

Neutrino Flux: ILL model

• The method:

- Obtain the Fission rates of ²³⁵U, ²³⁸U,
 ²³⁹Pu, ²⁴¹Pu
- Use measured β spectrum of ²³⁵U, ²³⁹Pu,
 ²⁴¹Pu

K. Schreckenbach et al., PLB160(1985)325 A.A. Hahn et al., PLB218(1989)365

- Use calculated β spectrum of ²³⁸U
 P. Vogel et al., PRC 24(1981)1543
- Convert β spectra to n spectra

P. Vogel et al., PRC 76(2007) 025504

Cross Sections on Target

At tree level, for
$$\bar{v}_e + p \rightarrow e^+ + n$$

$$\sigma_{\rm tot}^{(0)} = \frac{2\pi^2/m_e^5}{f_{\rm p.s.}^R\tau_n} E_e^{(0)} p_e^{(0)} = \frac{G_F^2\cos^2\theta_C}{\pi} \big(1 + \varDelta_{\rm inner}^R\big) \big(f^2 + 3g^2\big) E_e^{(0)} p_e^{(0)},$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \simeq 1 + v_e a(E_\nu)\cos\theta\,,$$

$$a^{(0)} = \frac{f^2 - g^2}{f^2 + 3g^2} \simeq -0.10$$
,

P. Vogel et al., PRD60(1999)053003

Expected ve Energy Spectrum

Inverse-β Decay (IBD)

Electron anti-neutrino detection via Inverse-β Decay

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

 $n + Gd \rightarrow Gd^* + \gamma (8 \text{ MeV})$

Neutrino Event: Coincidence in time, space and energy

Neutrino energy:

$$E_{\overline{v}} \cong T_{e^{+}} + T_{n} + (M_{n} - M_{p}) + m_{e^{+}}$$

$$10-40 \text{ keV} \qquad 1.8 \text{ MeV: Threshold}$$

Why Gadolinium?

ENDF Request 5174, 2015-May-20,03:01:29 EXFOR Request: 25731/1, 2015-May-20 03:02:26

- (2) Large neutron capture cross section
- (3) Decent abundances
- e.g, ¹⁵⁷Gd, ¹⁵⁵Gd

Table 4. Abundances and thermal neutron capture cross sections for the Gd isotopes

	Gd	$\sum_{i} E_{\gamma_i}$	Abundance	Cross section	Relative
j	sotope	(KeV)	(%)	(barns)	intensity
	152	6247	0.20	735	$3 \cdot 10^{-5}$
	154	6438	2.18	85	$3.8 \cdot 10^{-5}$
	155	8536	14.80	60900	0.1848
	156	6360	20.47	1.50	$6 \cdot 10^{-6}$
	157	7937	15.65	254000	0.8151
	158	5942	24.84	2.20	$1.1 \cdot 10^{-5}$
	160	5635	21.86	0.77	$3 \cdot 10^{-6}$

from CHOOZ

IBD e⁺, neutron kinetics

Liquid Scintillator (LS)

Daya Bay Gd-LS

Wavelength shifter: bis-MSB

- LAB + PPO (3g/L) + bis-MSB (15mg/L) + 0.1%Gd

GdLS of the Daya Bay prototype

Energy Response in LS

Energy measurement in LS:

– charge particle ionization → optical photons → total detected

photon electrons → 'Visible Energy'

- Major non-linearity effects
 - Birks' Law (1964)

Light produced

per step

$$dS = A \frac{dE}{1 + C_1 \delta + C_2 \delta^2}$$
 $\delta = \frac{dE}{\rho dx}$ [MeVg⁻¹cm²]

Inside View of Daya Bay detector

Absorption – reemission process

Birks' constants

PPO/bis-MSB can absorb one optical photon (particularly UV photon),
 then emit a new photon

<u> IBD spectrum – Prompt Signal</u>

Neutrino energy:

10-40 keV

1.8 MeV: Threshold

+ 1.022MeV (e+ annihilation energy)

<u> IBD spectrum – Delayed Signal</u>

- Neutron captured on Hydrogen or Gadolinium
 - Proton recoiling during the neutron thermalization will contribute to the prompt signal

Natural Radioactivity

Natural Radioactivity

- ⁴⁰K, ²³²Th, ²³⁸U average abundances in the earth's crust: 2.4, 9.6 and 2.7 ppm
- Radon from U chain, emanated from rock cracks
- Cosmic activation (e.g, ¹⁴C)
- Isotopes from Atmospheric Nuclear tests or reactor spent fuel processing (¹³⁷Cs, ⁸⁵Kr, ^{110m}Ag, etc)
 - 85Kr increased in last 50 years due to nuclear power plants and weapons, ~1Bq/m³ in fresh air
- Artificially introduced radioactivity
 - e.g, ⁶⁰Co in the steelmaking

Decay of ²³²Th to ²⁰⁸Pb

Alpha Lines

	Kev	%	Level
²³² Th	4.011	77	0
	3.957	23	59
²²⁸ Th	5.423	72.7	0
	5.340	26.7	85
²²⁴ Ra	5.686	95.0	0
	5.449	5.0	241
²²⁰ Rn	6.288	99.9	0
²¹⁶ Po	6.778	99+	0
²¹² Bi	6.090	27.2	0
	6.051	69.9	40
²¹² Po	8.785	??	0

Bi-Po events can be used to measure the ²³²Th/²³⁸U concentration if assuming the whole decay chain is in equilibrium

232_{Th 1,41e10 y}

 $Q_{cc} = 4.081$

1.913 y 1646 4.79

1532 8%

228_{Ac}

 $Q_{\beta} = 0.048$

 $Q_{cx} = 5.520$

 $Q_{\beta} = 2.137$

3.66 d

224_{Ra}

 $Q_{cx} = 5.789$

2615 35.9

220_{Rn}

6.13 h

7_60% 0%

228_{Ra}

Decay of ²³⁸U to ²⁰⁶Pb

Alpha Lines

	KeV	%	Level
²³⁸ U	4.196	77	0
	4.149	23	50
²³⁴ U	4.777	72	0
	4.723	28	53
²³⁰ Th	4.688	76.3	0
	4.621	23.4	67
²²⁶ Ra	4.784	94.5	0
	4.602	5.5	186
²²² Rn	5.490	99.9	0
²¹⁸ Po	6.002	99+	0
²¹⁴ Po	7.687	99.9	0
²¹⁰ Po	5.305	99+	0

The alpha particles can create 'correlated background' via 13 C(α ,n) 16 O reaction

238_{U 4.468e9} y

Q_{ct} = 4.270

2.45e5

810_0.69

230_{Th}

 $Q_{cx} = 4.771$

226_{Ra}

Q_{ct} = 4.871

222_{Bn}

3.82 d

1.6e3

76.39

8.0e4 y

 $Q_{cx} = 4.856$

All ₇ decays to 0 0 99.87% β decay

234_{Th}

24.1 d

$^{13}C(\alpha,n)^{16}O$

¹³C(α,n)¹⁶O can produce 'correlated background'

13 C(α ,n) 16 O in KamLAND

KamLAND 2003, PRL90.021802

TABLE I. Background summary.

Background	Number of events
Accidental	0.0086 ± 0.0005
⁹ Li/ ⁸ He Fast neutron	0.94 ± 0.85 < 0.5
Total B.G. events	1 ± 1

KamLAND 2005, PRL94.081801

α-decay of ²¹⁰Po, daughter of ²²²Rn introduced into the LS during construction

$^{13}C(\alpha,n)^{16}O$ in KamLAND

TABLE II. Estimated backgrounds after selection efficiencies.

Background	Contribution
Accidentals	80.5 ± 0.1
⁹ Li/ ⁸ He	13.6 ± 1.0
Fast neutron & Atmospheric ν	< 9.0
$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}_{gs}, np \to np$	157.2 ± 17.3
$^{13}C(\alpha, n)^{16}O_{gs}^{3}$, $^{12}C(n, n')^{12}C^*$ (4.4 MeV γ)	6.1 ± 0.7
$^{13}\text{C}(\alpha, n)^{16}\text{O}$ 1st exc. state (6.05 MeV e^+e^-)	15.2 ± 3.5
$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}$ 2nd exc. state (6.13 MeV γ)	3.5 ± 0.2
Total	276.1 ± 23.5

KamLAND 2008, PRL100.221803

U、Th Chain

γ spectra of Daya Bay Granite

- 1 Ci = 3.7×10^{10} Bq
- ppm, ppb:
 - 1 ppb 40K = 258.4 mBq/kg
 - -1 ppb 238U = 12.4 mBq/kg
 - 1 ppb 232Th = 4.0 mBq/kg

- Granite has high radioactivity
- Daya Bay Granite is ~3x of the world average

~10 ppm U

~30 ppm Th

~5 ppm K40

Solve the problem:

Calculate the contribution from gammas in the surrounding rock to the detector. (assume gamma attenuation length in rock is \boldsymbol{L})

Acceptance of a gamma in dV to detector $f = \frac{S}{4\pi r^2}$

For any given
$$d\Omega$$
, $dN = \int_{r_0}^{\infty} A d\Omega r^2 dr \cdot \frac{S}{4\pi r^2} \cdot \exp(-\frac{r - r_0}{L}) = d\Omega \frac{ASL}{4\pi}$

 $Ad\Omega r^2 dr$ is activity in dV $\exp(-(r-r_0)/L)$ is self-absorption of rock where L is gamma attenuation length

Since dN is simply a constant times d Ω , especially not related with r_0 , the integral on d Ω is trivial. N=ASL. It means that the contribution w/ acceptance and self-absorption taken into account equals to activity in a rock volume of detector cross-section times gamma attenuation length.

Radioactivity Control (I)

- Sufficient shielding to prevent the rock radioactivity from entering the detector
 - 8.8ppm U, 28.7ppm Th, 4.5ppm K
 - Shielding is very important

The thickness ℓ required to reduce the external flux by a factor f > 1

Question I:

If you are building the experiment, what material do you choose as shielding material?

Question II:

What thickness do you need to achieve ~ 20 Hz singles rate in the detector?

Figure 29.6: γ -ray attenuation lengths in some common shielding materials. The mass attenuation data has been taken from the NIST data base XCOM; see "Atomic Nuclear Properties" at pdg.1bl.gov.

Radioactivity Control (II)

- Measure the radioactivity for every part of the detector, particularly those directly contact with LS. Select the clean material
- PMT glasses: NO direct contact with LS, low radioactivity glass
- Stainless steel: low radioactivity steel and welding material
- NO Aluminum
- Clean room (10k class) for installation
- Ensure the cleanness during LS production and storage
- Radon: Nitrogen flow during Liquid scintillator storage and operation

Solve the problem:

Calculate the ⁴⁰K radioactivity from ONE drop (0.05ml) of human sweat.

Cosmic Rays

Cosmic Rays

 μ flux on ground: ~200Hz/m²

Muon flux

Flux on ground: Gaisser formula

$$\frac{dI_{\mu}}{dE_{\mu}d\cos(\theta)} = 0.14 \left(\frac{E_{\mu}}{GeV}\right)^{-2.7} \left[\frac{1}{1 + \frac{1.1E_{\mu}\cos(\theta)}{115GeV}} + \frac{0.054}{1 + \frac{1.1E_{\mu}\cos(\theta)}{850GeV}} \right]$$

$$\frac{dI_{\mu}}{dE_{\mu}d\cos(\theta)} = 0.14 \left(\frac{E_{\mu}}{GeV} (1 + \frac{3.64GeV}{E_{\mu}[\cos(\theta^*)]^{1.29}}) \right)^{-2.7} \left[\frac{1}{1 + \frac{1.1E_{\mu}\cos(\theta^*)}{115GeV}} + \frac{0.054}{1 + \frac{1.1E_{\mu}\cos(\theta^*)}{850GeV}} \right]$$

Modified Gaisser Formula, (Mengyun Guan et al.)

Stopping Power of Muons

Muon energy loss

Continuous process — Ionization

$$\frac{dE}{dx} \approx -[1.9 + 0.08ln(\frac{E_{\mu}}{m_{\mu}})]$$

 Discrete process — Bremsstrahlung, e⁺/e⁻ pair production, hadron process. Significant when muon energy is high

$$\frac{dE}{dx} = -\frac{E_{\mu}}{\xi}$$
 In rock , $\xi \approx 2.5 imes 10^5 g \cdot cm^{-2}$,

Minimum energy to pass through x_{min} rock

$$E_0^{min} = \epsilon \left(e^{\frac{x_{min}}{\xi}} - 1 \right)$$

where ε =500GeV, at which the continuous process and discrete process have equal contribution.

Muon Propagation to Underground Lab

- DYB digitized mountain profile map
 - 1×2 km high precision survey map (1m)
 - 3×4 km 1:5000 map (5m)
 - 10×10 km SRTM map

Muon propagation software: MUSIC

Rock density: 2.6 g/cm³

Underground Lab

Muon Simulation

	DYB	LA	Mid	Far
Elevation (m)	93	100	208	324
Flux (Hz/m²)	0.88	0.69	0.17	0.039
Mean Energy (GeV)	57	58	97	142

μ flux on ground: ~200Hz/m²

Spallation Neutron

- Neutrons from muon spallation is the most important background in those low background experiments
- Estimate the neutron yield: Simulation or Empirical formula

$$N_n = 4.14 E_u^{0.74} \times 10^{-6} neutron/(muon \bullet g/cm^2)$$
 Y.F. Wang et al

neutrons produced by single muon passing 1cm material ($\rho=1$ g/cm³)

Daya Bay Near (Far) neutron production density in the rock
 0.03 (0.001) neutron/m³/sec

Neutron Energy and Angular Spectra

$$\frac{dN}{dE_n} = A \left(\frac{e^{-7E_n}}{E_n} + (0.52 - 0.58e^{-0.0099E_{\mu}})e^{-2E_n} \right)$$

$$\frac{dN}{d\cos\theta} = \frac{A}{(1 - \cos\theta)^{0.6} + 0.699E_{\mu}^{-0.136}}$$

PHYSICAL REVIEW D 64 013012

Shield Neutrons

- Active Water is the best
 - Low radioactive backgrounds (<1ppb)
 - Good for neutron moderation
 - Good for neutron veto (tag fast neutrons)
 - Equipped with PMTs → water Cerenkov detector

Need Go Underground

- **Experience from Palo Verde**
 - Unique triple coincidence due to shallow depth
 - No monochromatic energy peak → difficult for efficiency, systematic errors, ...

Muon Capture

- Stopping Muon: $\mu^+ \rightarrow e^+ + v$, Michele electron, $\tau = 2.19703 \ \mu s$
- μ^- first captured by atom, then decay via $\mu^- \rightarrow e^- + \nu$, or captured by the nuclei $\mu^- + p \rightarrow \nu_\mu + n$

$$\mu^- + ^{12}C \rightarrow \nu_{\mu} + ^{12}B^*$$

元素	μ^- 寿命 (ns)	核俘获率 (s-1)	核俘获过程几率 (%)	平均中子个数 (/反应)
С	2026.3	0.388×10^{5}	7.85	1
Н	2194.9	0.420×10^3	0.11	1
О	1795.4	1.026×10^{5}	18.43	0.98
Fe	201	45.30×10^5	91.08	1.12

图 1.35: 氧核俘获带负电荷的 μ 子后放出 的中子能谱 [64]

Cosmogenic Longlived Isotopes

- Can not be removed by muon veto
- 8 He/ 9 Li: beta-n emitters, can form correlated background, the biggest background $\sigma_{\mathrm{tot}}(E_{\mu}) \propto E_{\mu}^{0.73}$

	Lifetime in KamLAND LS	Radiation energy (MeV)	Yield ($\times 10^{-7} \mu^{-1} \text{ g}^{-1} \text{ cm}^2$)		
			Ref. [10]	FLUKA calc.	KamLAND measuremen
n	207.5 μs	2.225 (capt. γ)	_	2097 ± 13	2787 ± 311
¹² B	29.1 ms	$13.4~(\beta^{-})$	_	27.8 ± 1.9	42.9 ± 3.3
¹² N	15.9 ms	$17.3 \ (\beta^+)$	_	0.77 ± 0.08	1.8 ± 0.4
⁸ Li	1.21 s	$16.0 (\beta^- \alpha)$	1.9 ± 0.8	21.1 ± 1.4	12.2 ± 2.6
^{8}B	1.11 s	$18.0 (\beta^+ \alpha)$	3.3 ± 1.0	5.77 ± 0.42	8.4 ± 2.4
⁹ C	182.5 ms	$16.5 (\beta^+)$	2.3 ± 0.9	1.35 ± 0.12	3.0 ± 1.2
⁸ He	171.7 ms	$10.7 (\beta^- \gamma n)$	1.0 ± 0.3	0.32 ± 0.05	0.7 ± 0.4
⁹ Li	257.2 ms	$13.6 (\beta^- \gamma n)$	1.0 ± 0.3	3.16 ± 0.25	2.2 ± 0.2
¹¹ C	29.4 min	$1.98 (\beta^+)$	421 ± 68	416 ± 27	866 ± 153
10 C	27.8 s	$3.65 (\beta^+ \gamma)$	54 ± 12	19.1 ± 1.3	16.5 ± 1.9
¹¹ Be	19.9 s	$11.5 (\beta^{-})$	<1.1	0.84 ± 0.09	1.1 ± 0.2
⁶ He	1.16 s	$3.51(\beta^{-})$	7.5 ± 1.5	12.08 ± 0.83	_
⁷ Be	76.9 day	0.478 (EC γ)	107 ± 21	105.3 ± 6.9	_

How to deal with ⁹Li/⁸He?

- Measurement in situ:
 - Time since last muon for selected events follows

$$f(t) = B \cdot \frac{1}{\lambda} \exp(-t/\lambda) + S \cdot \frac{1}{T} \exp(-t/T)$$
$$\frac{1}{\lambda} = \frac{1}{\tau} + \frac{1}{T}$$

- Both χ^2 and ML fitting give true values of B
- The method starts to have difficulty when muon rate is high

L.J. Wen et al., NIM A564(2006)471

<u>Isotope Production vs. Showering μ</u>

- Showering muons
 - Energy deposit >> minimum ionization
 (~200MeV/w.m.e) . No hard criteria
 - Dominate the isotope production

Fraction from showering μ (%)

This measurement
Phys.Rev.C.81.025807, KamLAND

Muon Bundles

 Produced in the air showers initiated by high energy cosmic ray particles. Muons in a bundle can propagate all the way to underground detector

- Not important for small detector (Daya Bay scale)
- Important to measure for large detector (JUNO scale), ~20%

Detector Design

Relative Measurement

$$\frac{N_{\rm f}}{N_{\rm n}} = \left(\left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$$

General Concepts

Anti-neutrino events are rare, thus background suppression is a key of the experiment. It's essential to design a good shielding to the Anti-neutrino detector.

- Underground Lab to shield cosmic rays
- **♦** Low-background antineutrino detector (AD)
- AD merged in water pool (passive shielding)
- Water Cerenkov Detector (active shielding)
- **♦** RPC detector on the top

The Daya Bay Detectors

- Multiple AD modules at each site to check Uncorr. Syst. Err.
 - Far: 4 modules, near: 2 modules
- Multiple muon detectors to reduce veto eff. uncertainties
 - Water Cherenkov: 2 layers
 - RPC: 4 layers at the top + telescopes

Water Cerenkov Detector

Detector Calibration System

Three calibration axes

 Energy scale, time-dependence, non-uniformity, efficiency, etc

Calibration sources

- LED → PMT gain, efficiency
- 68Ge (2 × 0.511 MeV y's)
- 241 Am- 13 C (neutron source) + 60 Co (1.17+1.33 MeV γ's)
- Weekly regular calibration
 - 3 ACU x 5 positions x 3 sources
- Manual 4π calibration system

Thanks!