The TA × 4 experiment

E. Kido for the Telescope Array Collaboration
Institute for Cosmic Ray Research, University of Tokyo
Kashiwa, Japan
Outline

- Motivation of the TA × 4 Experiment
- Design of the TA × 4 Surface Detector (SD) Array
- Design of TA × 4 SDs
- Construction of the SDs
- Performance of the SDs
- Future Prospects
- Summary
Indications of anisotropy: hotspot observed by the TA experiment

- TA experiment 5 years observation, 72 events with $E > 57$ EeV
- Max. local significance: 5.1σ
 - Observed: 19 events, Expected from isotropy: 4.5 events in the direction
- Chance probability to exceed the local significance 5.1σ: 3.4σ
- First observation of anisotropy at the highest energies with high significance

Arrival directions of $E > 57$ EeV cosmic rays

Significance map

Equatorial coordinate

20 degrees oversampling from each event

The TA × 4 Experiment

- 500 SDs, 2.08 km spacing for
- 4 × TA SD detection area (~3000 km²) combined with TA SD
 - accepted by Japan in April 2015
 - first 100 SDs arrived at Utah in spring 2016
 - Applied to build 2 FD station (4+8 HiRes Telescopes) to US NSF
 - accepted in 2016

→ Take 19 years TA SD data

Take 16.3 years SD and FD hybrid data
Design of the TA × 4 SD array

- E > 57 EeV: reconstruction efficiency > 95%
- Angular resolution: 2.2°
- Energy resolution: ~25%
Design of TA × 4 SDs

- 2 layers 3 m² 1.2 cm thick plastic scintillators
 → Calibration of signals using single muon
- DAQ with 2.4 GHz wireless communication
- 6 new communication towers
Design of TA × 4 SDs

PMT: Hamamatsu R8619
(PMTs in TA SD: ET9124)

- Quantum efficiency ~20% at 500 nm (~10% ET9124)
- Pulse linearity ~50 mA (25 mA ET9124)
- Position dependence of the output signal on the photo cathode < ~10%

→Change of the arrangement of wavelength shifting fibers
Total length of fibers ~33% of TA SD
Construction of 173 TA × 4 SDs

- 100 scintillator boxes were assembled in Meisei company (Japan) in winter 2015
- 73 scintillator boxes were assembled in Akeno Observatory (Japan) in summer 2016
- 3 supervisors + 6-7 company people/students/staffs
- 4-5 scintillator boxes were assembled per day.

Fibers are assembled

polishing fibers

2016/10/14
Calibration using single muon

Number of photo electrons corresponding to the single muon peak of each layer of SD:

19.0 ± 3.3

All data points are inside of the distribution of TA SD (24.6 ± 7.2)

Mean value of the Gaussian obtained by fitting ADC distribution of pedestal run

Typical charge ADC distribution obtained by taking coincidence of 2 layers of the SD

Relative single peak of sampled scintillators before the assembly (1 sample per (50/100))

16 scintillators are used for 1 SD
Linearity of PMTs were measured with 2 LEDs inside of SDs
Y-axis: Non-linearity of output current from PMTs
X-axis: Output current from PMTs
(1 count \sim 0.01 mA)

Linearity of all assembled PMTs was checked.
Non-linearity < 10% for ADC val. of SD elec. < 4095

Typical non-linearity of PMTs

SD electronics
Max. ADC value
Position Dependence of the Signals

5 SDs measured
15 cm × 15 cm trigger probes
8 positions are measured at the same time
Position Dependence of the Signals

- Max. difference from the average: $\sim 20\%$
- Main source of the position dependence: decay length in the WLS fibers
 \rightarrow Max. difference from the average of (up + low) signals: $\sim 15\%$
Future Prospects

- Transportation of scintillator boxes, mass production of electronics
- Assembly and deployment of SDs
- Construction of FDs
Future Prospects

Assumption:
The hotspot comes from 1 source with 10 deg. Gaussian σ.
Oversampling 20° radius circle

N_{total}: 305 events, 21 TA SD equivalent years
N_{BG}: 244 events isotropic background
N_{source}: 61 events (21 events and 40 events for 2 separated sources)

Assumption:
The hotspot comes from 2 separated sources with $1\sigma=10$ deg. and with $1\sigma=5$ deg..
Oversampling 15° radius circle
Future Prospects

- **Energy spectrum**: more detailed spectrum shape at the highest energies with \(\sim 21 \) TA SD equivalent years data
- **Composition**: \(X_{\text{max}} \) using SDFD hybrid events with high statistics will be also provided.
Summary

• Construction of TA × 4 SDs and FDs was funded.
• 173 scintillator boxes of SDs were already assembled.
• Number of photo electrons corresponding to the single muon peak is 19.0 ± 3.3. The plastic scintillators determines the fluctuation.
• In the range of SD electronics, non-linearity of all PMTs <10%.
• Preliminary max. position dependence of up+low signals < ~15%
• First 100 scintillator boxes arrived at Utah in spring 2016.
• 2 FD stations will be also constructed in the near future.
Back Up
Schedule of TA×4

<table>
<thead>
<tr>
<th>JFY</th>
<th>construction or observation</th>
<th>surface detector (SD)</th>
<th>hybrid (HYB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TA SD (=1) (=1)</td>
<td>additional SD (=3)</td>
</tr>
<tr>
<td>2008-2014</td>
<td>observation</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>construction</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>construction</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>construction/(2/3)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>observation(1/3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>observation</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2019</td>
<td>observation</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>subtotal</td>
<td></td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

JFY: Japanese Fiscal Year that starts in April
Examples of Energy Spectra

w/o E resolution

With E resolution

\[\Delta \ln(E) = 0.3 \]
Expected significance of the hotspot considering energy resolution effect
Efficiency for the energy spectrum analysis

- Number of good SDs ≥ 4
- Zenith Angle < 45 degree
- LDF (only) Chi2/Dof < 10
- Pointing direction uncertainty < 8 degrees
- Sigma_S800/S800 < 0.26

- 50% reconstruction efficiency, 3.2 degree angular, and 27% energy resolution, $E > 32$ EeV (spectrum cuts)
Resolution

• Ta sd: $E > 57 \text{ EeV}$ 1-1.7 deg
• 15-20% energy resol.
TAX4 SD arrangement of fibers

• 2 layers of 1.2 cm thick plastic scintillators
• The distance b/w fibers: 2 cm → 4 cm
 → Number of photons from fibers ~1/2 of TA SDs
 No problem in efficiency
• Length of fibers: 5 m → 6.1 m
 Arrangement of fibers is changed
• Total length of fibers
 5 m × (208 + spare) → 6.1m × 56
 ~33% of TA SD
Connection of the surface of TAx4 SD PMT with fibers

- Holder of the fiber bundle: transparent → white
 ~9% more number of photons
- Size of the fiber bundle is smaller.
 Diameter: ~20 mm → 8.7 mm
- Optical grease (Optseal: Shin-etsu Chemical Co. Ltd.) is used
その他R&D

鳥の被害対策: バードスパイク, ケーブル保護チューブの検討

エレクトロニクス用リブートタイマー CN101A
全SDに設置予定、週に一度自動リブート

現在TA実験の
SDアレイで試験中
→SDへのアクセスを軽減