

Outline

- Motivation of the TA × 4 Experiment
- Design of the TA × 4 Surface Detector (SD) Array
- Design of TA × 4 SDs
- Construction of the SDs
- Performance of the SDs
- Future Prospects
- Summary

Indications of anisotropy: hotspot observed by the TA experiment

- TA experiment 5 years observation, 72 events with E > 57 EeV
- Max. local significance: 5.1σ Observed: 19 events, Expected from isotropy: 4.5 events in the direction
- Chance probability to exceed the local significance 5.1 σ: 3.4 σ
- First observation of anisotropy at the highest energies with high significance

The TA \times 4 Experiment

500 SDs, 2.08 km spacing for

4 × TA SD detection area (~3000 km²)

combined with TA SD

accepted by Japan in April 2015

first 100 SDs arrived at Utah

in spring 2016

Applied to build 2 FD station (4+8 HiRes

Telescopes) to US NSF

accepted in 2016

→ Take 19 years TA SD data

Take 16.3 years SD and FD hybrid data

Design of the TA \times 4 SD array

- E > 57 EeV: reconstruction efficiency > 95%
- Angular resolution: 2.2°
- Energy resolution: ~25%

Design of TA × 4 SDs

- 2 layers 3 m² 1.2 cm thick plastic scintillators
- → Calibration of signals using single muon
- DAQ with 2.4 GHz wireless communication
- 6 new communication towers

Design of TA × 4 SDs

Optical grease (Optseal: Shin-etsu Chemical Co. Ltd.) b/w fibers and PMT PMT: Hamamatsu R8619 (PMTs in TA SD: ET9124)

- Quantum efficiency~20 % at 500 nm (~10% ET9124)
- Pulse linearity \sim 50 mA (25 mA ET9124)
- Position dependence of the output signal on the photo cathode < ~ 10%
- →Change of the arrangement of wavelength shifting fibers

Total length of fibers ∼ 33% of TA SD

Construction of 173 TA × 4 SDs

polishing fibers

- 100 scintillator boxes were assembled in Meisei company (Japan) in winter 2015
- 73 scintillator boxes were assembled in Akeno Observatory (Japan) in summer 2016
- 3 supervisors + 6-7 company people/students/staffs
- 4-5 scintillator boxes were assembled per day.

Calibration using single muon

Mean value of the Gaussian obtained by fitting ADC distribution of **pedestal run**

Typical charge ADC distribution obtained by taking coincidence of 2 layers of the SD

Number of photo electrons corresponding to the single muon peak of each layer of SD:

19.0±3.3
All data points are inside of the distribution of TA SD (24.6±7.2)

Number of Produced Scintillators

Relative 1MIP Peak

Relative single peak of sampled scintillators before the assembly (1 sample per (50/100))

16 scintillators are used for 1 SD

Linearity of PMTs

Position Dependence of the Signals

Position Dependence of the Signals

- Max. difference from the average: ~20%
- Main source of the position dependence: decay length in the WLS fibers
 - \rightarrow Max. difference from the average of (up + low) signals: $\sim 15\%$

Future Prospects

- Transportation of scintillator boxes, mass production of electronics
- Assembly and deployment of SDs
- Construction of FDs

Future Prospects

Assumption:

The hotspot comes from 1 source with 10 deg. Gaussian σ .

Oversampling 20° radius circle

Assumption:

The hotspot comes from 2 separated sources with $1\sigma=10$ deg. and with $1\sigma=5$ deg..

Oversampling 15° radius circle

N_{total}: 305 events, 21 TA SD equivalent years

N_{BG}: 244 events isotropic background

N_{source}: 61 events (21 events and 40 events for 2 separated sources)

Future Prospects

TA SD energy spectrum (7 years data)

- Energy spectrum: more detailed spectrum shape at the highest energies with ∼21 TA SD equivalent years data
- Composition: Xmax using SDFD hybrid events with high statistics will be also provided.

Summary

- Construction of TA × 4 SDs and FDs was funded.
- 173 scintillator boxes of SDs were already assembled.
- Number of photo electrons corresponding to the single muon peak is 19.0 ± 3.3 . The plastic scintillators determines the fluctuation.
- In the range of SD electronics, non-linearity of all PMTs <10%.
- Preliminary max. position dependence of up+low signals $< \sim 15\%$
- First 100 scintillator boxes arrived at Utah in spring 2016.
- 2 FD stations will be also constructed in the near future.

Back Up

Schedule of TA×4

JFY	construction or observation	surface detector (SD)		hybrid (HYB)	
	oosel vation	TA SD (=1)	additional SD	ТА НҮВ	additional HYB
		(=1)	(=3)	(=1)	(=3)
2008-2014	observation	7	0	7	0
2015	construction	1	0	1	0
2016	construction	1	0	1	0
2017	construction/(2/3)	1	1	1	0.3
	observation(1/3)				
2018	observation	1	3	1	2
2019	observation	1	3	1	2
subtotal		12	7	12	4.3
total		19		16.3	

JFY: Japanese Fiscal Year that starts in April

Examples of Energy Spectra

Hotspot ⊢ Isotropic BG ⊢□ 1000 MC 100 10 0.1 0.01 10 100 E (EeV)

with E resolution

Expected significance of the hotspot considering energy resolution effect

Efficiency for the energy spectrum analysis

- Number of good SDs >=4
- Zenith Angle < 45 degree
- LDF (only) Chi2/Dof < 10
- Pointing direction uncertainty < 8 degrees
- Sigma S800/S800 < 0.26

50% reconstruction efficiency, 3.2 degree angular, and 27% energy resolution, **E > 32 EeV** (spectrum cuts)

Resolution

- Ta sd: E > 57 EeV 1-1.7 deg
- 15-20% energy resol.

TAx4 SD arrangement of fibers

Connection of the surface of TAx4 SD PMT with fibers

- Size of the fiber bundle is smaller. Diameter: \sim 20 mm \rightarrow 8.7mm
- Optical grease (Optseal: Shin-etsu Chemical Co. Ltd.) is used

その他R&D

鳥の被害対策: バードスパイク, ケーブル保護チューブの検討

エレクトロニクス用リブートタイマー CN101A 全SDに設置予定、週に一度自動リブート

現在TA実験の SDアレイで試験中 →SDへのアクセスを軽減