

UHE arrival directions A. di Matteo

The datasets Cross-calibration

Results The flux sky map Multipolar analysis Search for hotspots Correlation with LS Arrival directions at ultra-high energies A review

Armando di Matteo^{*a*} for the Auger/TA anisotropy working group

^a Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium E-mail: armando.di.matteo@ulb.ac.be

2016 International Conference on Ultra-High Energy Cosmic Rays, 11–14 October 2016, Kyoto, Japan

UHE arrival directions A. di Matteo

Γhe datasets Cross-calibration

Results The flux sky map Multipolar analys Search for hotspo Correlation with I

Conclusions

1 The datasets

Cross-calibration

2 Results

- The flux sky map
- Multipolar analysis
- Search for hotspots
- Correlation with large-scale structure

The datasets

UHE arrival directions

A. di Mattet

The datasets

Results The flux sky map Multipolar analysis Search for hotspots Correlation with LS Conclusions

Telescope Array [May 2008–May 2015]

- zenith angles $\theta \leq 55^{\circ}$
- 8 700 km² sr yr exposure
- 83 events *E* > 57 EeV

Pierre Auger Obs. [Jan 2004–Mar 2014]

- zenith angles $\theta \leq 80^{\circ}$
- 66 452 km² sr yr exposure
- 602 events *E* > 40 EeV

Directional exposure

twice as much as in ApJ 794, 172 (2014)

UHE arrival directions

The datasets Cross-calibration

Results The flux sky map Multipolar analysis Search for hotspot Correlation with L

Conclusions

The datasetsCross-calibration

2 Results

- The flux sky map
- Multipolar analysis
- Search for hotspots
- Correlation with large-scale structure

Cross-calibration

UHE arrival directions A. di Matteo

The datasets Cross-calibration

Results The flux sky map Multipolar analysis Search for hotspots Correlation with LS Thanks to the addition of Auger inclined events ($60^{\circ} < \theta \le 80^{\circ}$), there is now a wide declination band ($-16^{\circ} \le \delta \le +45^{\circ}$) where the datasets overlap.

■ Regardless of the true arrival direction distribution, the quantity

 $\sum_{\text{events in band}} \frac{1}{\omega(\mathbf{n}_i)} \qquad \left(\omega(\mathbf{n}) = \text{directional exposure } [\text{km}^2 \text{ yr}] \right)$

is an unbiased estimator of

$$\int_{\text{band}} \Phi(\mathbf{n}) \, d\Omega \qquad \left(\Phi(\mathbf{n}) = \text{directional flux } [\text{km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}] \right)$$

and should be the same for both experiments (modulo statistical fluctuations).

- We can use this to cross-calibrate the energy scales, by finding E_{Auger} and E_{TA} such that the Auger flux above E_{Auger} matches the TA flux above E_{TA} .
- (But we had better not get too close to the edges of the FoV where $1/\omega(\mathbf{n})$ is large, or else we would get large statistical fluctuations; here we use $-15^{\circ} \le \delta \le +40^{\circ}$.)

Statistical uncertainty on the cross-calibration

UHE arrival directions

A. di Matteo

The datasets Cross-calibration

Results The flux sky map Multipolar analysis Search for hotspots Correlation with LSS

- Unfortunately, at high energy we have little statistics:
 - TA flux $E_{TA} > 57.0$ EeV: (0.0470 ± 0.0055) km⁻² yr⁻¹ over 5.66 sr (12% rel. stat. unc.)
 - PA flux $E_{PA} > 42.0$ EeV: (0.0470 ± 0.0033) km⁻² yr⁻¹ over 5.66 sr (7% rel. stat. unc.) → their ratio = 1.00 ± 0.14
 - (also, $\approx 3\%$ systematic uncertainty on exposures)
- This means that $E_{\text{TA}} = 57$ EeV corresponds to $E_{\text{Auger}} = 42.0^{+2.5}_{-1.5}$ EeV.
- Solution: we use fixed energy thresholds for both experiments, but we scale the Auger exposure by a nuisance parameter *b* to compensate for any over- or under-estimate of the E_{Auger} matching $E_{\text{TA}} = 57.0$ EeV.

$$\omega_{\text{total}}(\mathbf{n}; b) = \omega_{\text{TA}}(\mathbf{n}) + b\omega_{\text{Auger}}(\mathbf{n})$$

• We have not taken into account the differences between TA and Auger energy resolutions, but we expect their effect to be small.

UHE arrival directions A. di Matteo

The datasets Cross-calibration

Results **The flux sky map** Multipolar analysis Search for hotspot Correlation with L

Conclusions

The datasets Cross-calibration

2 Results

The flux sky map

- Multipolar analysis
- Search for hotspots
- Correlation with large-scale structure

Estimated flux at $E_{TA} > 57 \text{ EeV}$ ($E_{Auger} > 42 \text{ EeV}$)

The datasets Cross-calibration

Results The flux sky map Multipolar analysi Search for hotspot Correlation with L

Blue dashed: galactic plane

> Magenta solid: supergalactic plane

Pre-trial significance of excesses/deficits $< 5\sigma$ everywhere, as shown in a later slide

UHE arrival directions A. di Matteo

The datasets Cross-calibration Results The flux sky map **Multipolar analysis**

Search for hotspot Correlation with L

Conclusions

The datasets Cross-calibration

2 Results

- The flux sky map
- Multipolar analysis
- Search for hotspots
- Correlation with large-scale structure

3 Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Dipole and quadrupole moments

UHE arrival directions A. di Matteo

The datasets Cross-calibration

Results The flux sky map Multipolar analysis Search for hotspots Correlation with LS Conclusions

Compatible with expectation from isotropic flux

Angular power spectrum

UHE arrival directions A. di Matteo

The datasets Cross-calibration Results The flux sky map Multipolar analysis Search for hotspots Correlation with LS

onclusions

Spherical harmonic expansion

$$\Phi(\mathbf{n}) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} a_{lm} Y_{lm}(\mathbf{n})$$

 $Y_{lm}(\mathbf{n})$ normalized by $\int_{4\pi} Y_{lm}^*(\mathbf{n}) Y_{l'm'}(\mathbf{n}) \, \mathrm{d}\Omega = \delta_{ll'} \delta_{mm'}$

Angular power spectrum

$$C_l = rac{1}{2l+1}\sum_{m=-l}^{+l} |a_{lm}|^2$$

measures anisotropies on angular scales $\sim 1/l$ rad.

UHE arrival directions A. di Matteo

The datasets Cross-calibration

- Results The flux sky map Multipolar analys Search for hotspo
- Conclusions

The datasets Cross-calibration

2 Results

- The flux sky map
- Multipolar analysis
- Search for hotspots
- Correlation with large-scale structure

Significance sky map (excesses above $E_{TA} = 57$ EeV, $E_{Auger} > 42$ EeV in 20° disks)

UHE arrival directions A. di Matteo The datasets

Cross-calibration

Results The flux sky map Multipolar analysis Search for hotspots Correlation with LS

60 30 120 240° 180 00 -30° -60°

Equatorial Coordinates - 20 deg. smoothing

Excess/deficit over isotropic expectation in pre-trial standard deviations

Arbitrary (historical) choice of threshold energy and disk size

We should check what will happen if we change them, but we still haven't.

-2

3

UHE arrival directions

he datasets

Results The flux sky map Multipolar analysi

Search for hotspots Correlation with LSS

Conclusions

The datasets Cross-calibration

2 Results

- The flux sky map
- Multipolar analysis
- Search for hotspots
- Correlation with large-scale structure

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Likelihood ratio

UHE arrival directions A. di Matteo

The datasets Cross-calibration

Results The flux sky map Multipolar analysis Search for hotspots Correlation with LSS

Conclusions

■ Unbinned likelihood *L* defined by

$$\log L = \sum_{\text{events}} \log \frac{\omega(\mathbf{n}_i) \Phi(\mathbf{n}_i)}{\int_{4\pi} \omega(\mathbf{n}) \Phi(\mathbf{n}) \, \mathrm{d}\Omega}$$

Given two flux models $\Phi_1(\mathbf{n})$, $\Phi_2(\mathbf{n})$, the likelihood ratio

$$\frac{L_1}{L_2} = \exp(\log L_1 - \log L_2)$$

tells us how many more times the first model is more likely than the second.

Correlation with large-scale structure

.

UHE arrival directions A. di Matteo

Cross-calibration

Results The flux sky map Multipolar analysis Search for hotspots Correlation with LS!

Conclusions

• We consider the flux model

$$\Phi_{ ext{LSS}}(\mathbf{n};\sigma) \propto \sum_{ ext{source catalog}} w_i \exp\left(rac{\mathbf{n}\cdot\mathbf{n}_i}{\sigma^2}
ight)$$

(Weighed sum of von Mises–Fisher distributions, approx. Gaussian for small σ ; w_i = weight to take into account non-uniform catalog exposure and flux attenuation due to propagation)

Isotropy vs LSS with 6° smoothing

Strongly incompatible with smoothed LSS, marginally compatible with isotropy

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Isotropy vs LSS with 10° smoothing

Similar situation

Isotropy vs LSS with 20° smoothing

Almost compatible with smoothed LSS, but isotropy is still better

|▲□▶▲□▶▲□▶▲□▶ □ のへの

Isotropy vs LSS with 30° smoothing

Smoothed LSS slightly better than isotropy now

人口 医水理 医水白 医水白 医一日

Conclusions

UHE arrival directions A. di Matteo

The datasets Cross-calibration

Results The flux sky map Multipolar analysi Search for hotspot Correlation with L

- First attempt to produce a UHE Auger/TA sky map above 57 EeV (TA scale) / 42 EeV (Auger scale)
- Cross-calibration of the flux in the common band:
 - Correcting for anisotropies of experimental origin
 - Effective energy threshold affected by large uncertainties
- No statistically significant large-scale anisotropy
- Hints of 20° hotspot(s) and correlation with LSS smoothed by 30°
 - But we should check what happens with different energy thresholds.
- More statistics are needed
 - Planned Telescope Array expansion: TA×4
 - Auger will continue data taking through 2025.