

see also T. Huege, Physics Reports 620 (2016) 1, doi:10.1016/j.physrep.2016.02.001, arXiv:1601.07426

(VHF) Radio detection of cosmic rays – Achievements and future potential

Tim Huege (Karlsruhe Institute of Technology)

Contents

- achievements of radio detection
- what can radio do for (U)HECR science

Radio detection of (U)HECR air showers

most experience in VHF regime (30-80 MHz)

- low energies: radio signal hidden in Galactic noise
- very high energies: still need concepts to instrument largest areas

adapted from R. Engel

Comparison of ground experiments to scale

- from prototypes to large-scale experiments
- sparse vs. dense arrays

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

A decade of radio-emission modelling

om	ZHAireS	time- and frequency-domain, Aires showers, ZHS formalism
re "microscopic"	■ REAS3.1	time-domain, histogrammed CORSIKA showers, endpoint formalism
	■ SELFAS2	time-domain, shower from universality, summing up vector potentials for tracks
	■ EVA	time-domain, parameterisation of distributions derived from cascade equations or MC
	■ MGMR	time-domain, analytic, parametrized shower, fast, free parameters, summing up "mechanisms"

Coreas

time-domain, CORSIKA showers, endpoint formalism

Complexity of radio-emission footprint

maximum amplitude of vertical iron shower at 40-80 MHz as simulated with CoREAS (higher frequencies: Cherenkov ring)

TH et al., ARENA2012

Macroscopic interpretation of radio emission

primary effect: geomagnetic field induces time-varying transverse currents

Kahn & Lerche (1967)

Askaryan (1962,1965)

 secondary effect: time-varying net charge excess (Askaryan effect)

Pierre Auger Coll., Phys. Rev. D 89 (2014) 052002.

Diagrams by H. Schoorlemmer & K.D. de Vries

Comparison of simulations with LOPES data

- very good agreement, well within systematic uncertainties
- the absolute scale is predicted correctly!
- see also results from AERA & Tunka-Rex

LOPES Coll., Astropart. Phys. 75 (2016) 72-74.

Comparison of simulations with LOFAR data

- measurement of individual shower with extreme level of detail
- data can be reproduced by simulations
- see geomagn., charge excess and Cherenkov effects

S. Buitink, A. Corstanje, J. E. Enriquez, et al., Phys. Rev. D 90 (2014) 082003.

Lab-Experiment: SLAC T-510

- electromagnetic particle shower in strong magnetic field, controlled conditions
- cross-check first-principle calculations
 - agree within systematic uncertainties (~35%)

Belov et al. (T-510 Collaboration), PRL116 (2016) 141103

- radio signal can be predicted from first principles
- emission well-understood, can be used to set energy scale
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

Tunka-Rex energy reconstruction

- use amplitude at characteristic lateral distance as energy estimator
 - accuracy: absolute scale fits nicely with CoREAS simulations
 - precision: 20% combined resolution of radio and optical Cherenkov detectors (~15% alone)
- see also comparable results from LOPES

Tunka-Rex Coll., JCAP (2016) arXiv:1509.05652.

AERA energy reconstruction – radiation energy

- at each antenna calculate energy fluence from timeintegration of Poynting flux
- then integrate energy fluence over area using 2D signal distribution model

Piere Auger Coll., Phys Rev. D (2016), arXiv:1508.04267.

"Radiation energy" as energy estimator

Piere Auger Coll., Phys Rev. Lett. (2016), arXiv:1605.02564.

energy resolution ~17%

 $\times \left(\sin\alpha \frac{E_{\rm CR}}{10^{18}\,{\rm eV}} \frac{B_{\rm Earth}}{0.24\,{\rm G}}\right)^2$.

of 10¹⁸ eV, only 10⁷ eV go into radio signals

 $(15.8 \pm 0.7 \text{ (stat)} \pm 6.7 \text{ (sys)}) \text{ MeV}$

- radiation energy gives a calorimetric measurement of the energy in the electromagnetic cascade
- this value can be measured by any experiment, so crosscalibrate energy scales against the Auger scale

Radiation energy and energy-scale calibration

Radiation Energy

$$E_{30-80\,\mathrm{MHz}}$$

$$\propto \int A^2 \mathrm{d}^2 r$$

The Radiation
Energy reflects
the calorimetric
energy of the air
shower. It is
independent of
observation
altitude.

11.9 MeV

11.9 MeV

Piere Auger Coll., Phys Rev. Lett. (2016), arXiv:1605.02564.

LOFAR altitude

(sea level)

Amplitude at optimal lateral distance

 \boldsymbol{A}

 $0.70\,\mathrm{mV/m}$

 $0.56\,\mathrm{mV/m}$

The optimal lateral distance and the amplitude measured there vary with observation altitude (even after charge-excess and zenith-angle correction).

Radiation energy and electromagnetic energy

Huege, Schulz, JCAP 09 (2016) 024

- radio signal can be predicted from first principles
- emission well-understood, can be used to set energy scale
- measures pure electromagnetic shower component

direct comparison to FD, little influence of hadronic interactions

 no absorption in the atmosphere, calorimetric energy measurement σ_E < 15%, possibly below 10%, cross-calibration between detectors

- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

 σ_E < 15%, possibly below 10%, cross-calibration between detectors

>95%

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

 σ_{E} < 15%, possibly below 10%, cross-calibration between detectors

>95%

 $\sigma < 0.5^{\circ}$

Lateral distribution as probe for composition

relativistic forward beaming of emission: geometrical distance from source to observer influences emission pattern
TH et al., ARENA2012

vertical proton shower at 40-80 MHz simulated with CoREAS vertical iron shower at 40-80 MHz simulated with CoREAS

Experimental Xmax validation by Tunka-Rex

- slope of radio-LDF as Xmax estimator
- Xmax from optical Cherenkov detectors and radio antennas agrees very well
- combined Xmax
 resolution ~50 g/cm²,
 Tunka alone ~28 g/cm²

Tunka-Rex Coll., JCAP (2016), arXiv:1509.05652.

Experimental Xmax validation by Auger

- currently various reconstruction approaches being tested in AERA
- current combined FD-RD resolution of ~45 g/cm², so AERA alone <~40 g/cm²</p>
- still room for improvement (only uses amplitude information)

F. Gaté for the Pierre Auger Coll., ARENA2016, arXiv:1609.06510

Global fit of particle and radio LDF with LOFAR

- global fit to CoREAS simulations gives Xmax to ~17 g/cm²
- S. Buitink et al., Phys. Rev. D 90 (2014) 082003, S. Buitink et al. Nature 435 (2016) 70

Lofar <Xmax> results

S. Buitink et al. Nature 435 (2016) 70

LOFAR unbinned analysis

compare measured distribution of

$$a = \frac{\langle X_{\text{proton}} \rangle - X_{\text{shower}}}{\langle X_{\text{proton}} \rangle - \langle X_{\text{iron}} \rangle}$$

with simulated distributions

result shows large fraction of light primaries at 10¹⁷-10^{17.5} eV

S. Buitink et al. Nature 435 (2016) 70

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

 σ_{E} < 15%, possibly below 10%, cross-calibration between detectors

>95%

 $\sigma < 0.5^{\circ}$

 σ_{Xmax} < 20 g/cm² dense (< 40 sparse)

How expensive are individual detectors?

- antenna can be cheap, SALLA antenna plus low-noise amplifier costs <500 US\$
- digital electronics more expensive, but profit from Moore's law
- most expensive part is "infrastructure" (power supply, communications, …)
- sub-1000\$ for antenna plus digital electronics certainly seem feasible

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

 σ_{E} < 15%, possibly below 10%, cross-calibration between detectors

>95%

 $\sigma < 0.5^{\circ}$

 σ_{Xmax} < 20 g/cm² dense (< 40 sparse)

\$1000/detector (+infrastructure)

Required detector spacing – inclined showers

Large-scale showers measured by AERA

- air showers up to 83° zenith angle measured
- footprints with radii up to 2 km in shower plane
- detection with 1.5 km antenna grid would be sufficient

O. Kambeitz for the Pierre Auger Collaboration, ARENA2016 conference, arXiv:1609.05456

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

 σ_E < 15%, possibly below 10%, cross-calibration between detectors

>95%

 $\sigma < 0.5^{\circ}$

 σ_{Xmax} < 20 g/cm² dense (< 40 sparse)

\$1000/detector (+infrastructure)

 $<300 \text{ m} (\theta < 60^{\circ}) > 1 \text{ km} (\theta > 65^{\circ})$

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

 σ_E < 15%, possibly below 10%, cross-calibration between detectors

>95%

 $\sigma < 0.5^{\circ}$

 σ_{Xmax} < 20 g/cm² dense (< 40 sparse)

\$1000/detector (+infrastructure)

 $<300 \text{ m} (\theta < 60^{\circ}) > 1 \text{ km} (\theta > 65^{\circ})$

cut heavily or rely on simulations

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

 σ_{E} < 15%, possibly below 10%, cross-calibration between detectors

>95%

 $\sigma < 0.5^{\circ}$

 σ_{Xmax} < 20 g/cm² dense (< 40 sparse)

\$1000/detector (+infrastructure)

 $<300 \text{ m } (\theta < 60^{\circ}) > 1 \text{ km } (\theta > 65^{\circ})$

cut heavily or rely on simulations

 $E > 10^{17}$ eV, exploit external triggers

Contents

- achievements of radio detection
- what can radio do for (U)HECR science

Improvement of hybrid measurements

- existing cosmic-ray detectors can often be equipped with radio antennas at limited cost (re-use "infrastructure")
- incorporation of radio detectors provides many advantages
 - pure measurement of electromagnetic component
 - good energy resolution
 - Xmax measurements with 100% duty cycle
 - generally different systematic uncertainties
- caveat: for non-inclined showers detector spacing of ~200-300 m required, so interesting in energy range 10¹⁷ to few times 10¹⁸ eV

(Cross-)calibration of the energy scale

- many uncertainties in data interpretation are related to uncertainties of the absolute energy scale
- measuring radio emission allows calibrating the energy scale
 - among different experiments (e.g., Auger's radiation energy@10¹⁸ eV)
 - against first-principle calculations (within 10% seems feasible)

Tunka-Rex & LOPES Collaborations, ARENA 2016 and submitted to PLB

Radio measurements of inclined showers

- combined measurements of inclined showers with particle detectors and radio antennas are an attractive option
 - particle detectors measure muons, radio detectors measure em component
 - range >~ 10¹⁸ eV will be above Galactic noise
 - common detector grid spacing can share infrastructure lower cost
 - useful also as veto for neutrino-induced air showers (small footprint)
- radio detection generally seems to be the most favorable technique to measure the electromagnetic component of inclined air showers
- see also plans for GRAND experiment for detection of neutrinos

Very dense arrays - Square Kilometre Array

- in the final design stages
- to be built in western Australia
- first science 2020
- planned completion 2023
- >60,000 dual-polarized antennas within 750 m diameter
- bandwidth 50-350 MHz
- can be used for air shower detection with minor additions
- precision measurements in energy range of ~10^{16.5} to 10^{18.5}

TH et al., ARENA2016 conference, arXiv:1608.08869

SKA will provide precision measurements

Xmax determination with well below 10 g/cm² resolution predicted by simulation study based on LOFAR reconstruction approaches

A. Zilles et al., ARENA2016 conference

Summary and conclusions

- radio detection of CRs has boomed and matured in the last decade
- we have clearly established
 - detailed understanding of complex radio emission physics (within 10%)
 - determination of arrival direction (well below 0.5°)
 - determination of air shower energy (~15%, room for improvement)
 - radio signal sensitivity to Xmax (<20 g/cm² for dense arrays and 40 g/cm² for sparse arrays, but with significant room for improvement)
- potential for application
 - high-duty-cycle energy & mass reconstruction in hybrid arrays
 - cross-calibration of the energy scale of cosmic-ray detectors
 - independent calibration of energy scale from first principle calculations
 - air shower physics via measurement of purely electromagnetic cascade

Backup slides

First-Generation modern MHz experiments

2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | ... | ...

Falcke & Gorham propose "geosynchrotron approach"

Second-Generation modern MHz experiments

2010 2011 2012 2013

Broad-band pulses – mostly in MHz regime

Scholten, Werner, Rusydi, Astropart. Phys. 29 (2008) 94–103.

Radio emission simulations – a vital tool

- full-scale air shower Monte Carlo
- "endpoint formalism" for the calculation of radio emission
- codes CoREAS and ZHAireS

James, Falcke, Huege, Ludwig, Phys. Rev. E. 84, 056602 Ludwig & Huege, Astrop. Physics 34, 438-446

CoREAS: endpoint formalism plus shower sim

Complexity of signal polarization

0

0

-65

-65

65

0

east field [muV/m]

superposition of geomagnetic and charge excess emission

CoREAS simulations. TH et al., see id 548

0

65

65

-65

65

0

-65

-65

-65

Geomagnetic seen by all – but charge excess?

CODALEMA reports core-shift ↔ eastwest asymmetry ↔ charge-excess at ICRC 2011

CODALEMA Coll., Astropart. Phys. 69 (2015) 50–60.

 AERA quantifies radial component to 14 ± 2%

Pierre Auger Coll., Phys. Rev. D 89 (2014) 052002.

Refractive index effects

K.D. de Vries et al, PRD (2010)

Alvarez-Muniz et al., Astrop. Phys. (2011)

- time compression of radio pulses along the Cherenkov angle
 - power at high frequencies, up to several GHz
 - Cherenkov ring arises

TH et al., ARENA2012

300-1200 MHz

Accuracy of direction reconstruction

from simulations: LOPES alone better than 0.1°

X_{max} reconstruction with cone angle

 \blacksquare X_{max} proportional to ρ after correction for zenith angle

precision: ~30 g/cm² fo

for REAS3 simulations without noise

precision: ~200 g/cm²

for LOPES measurements

External versus self-triggering

- external triggering works well
 - LOPES
 - CODALEMA
 - AERA
 - LOFAR

Is a self-triggering stand-alone radio detector what we really need? Do we not strive to do hybrid measurements anyway?

- self-triggering is very challenging
 - transient noise (RFI)
- it has been done successfully
 - TREND
 - AERA prototype and AERA
 - CODALEMA-III
- but: radio trigger purity is very low
 - need coincidence with other detector for clear identification
 - or need to use many details of radio signal (LDF, polarization) to identify air showers - what is realistic in a low-level trigger?

Direction reconstruction with interferometry

field strength [μV/m/MHz] -20

20

Sky map of a cosmic ray radio flash

H. Falcke et al. (LOPES Coll.), Nature 2005

> F.G. Schröder et al. (LOPES Coll.), **ECRS2012**

KASCADE RFI

Comparison of simulations with AERA data

- AERA provides detailed, well-calibrated event data
- simulations can reproduce measurements
 - absolute amplitude
 - complex LDF

Pierre Auger Collaboration, ICRC2013, id #899

Charge excess contribution is not a constant

depends
 on shower
 azimuth
 angle and
 observer
 lateral
 distance

P. Schellart, S. Buitink, A. Corstanje, et al., JCAP 10 (2014) 14.

Comparison of simulations with Tunka-Rex data

very good agreement between CoREAS simulations and Tunka-Rex data

Tunka-Rex Coll., Nucl. Instr. Meth. A 802 (2015) 89–96.

Expected energy sensitivity of radio detection

TH, Ulrich, Engel (Astrop. Phys. 2008)

linear scaling & characteristic distance for best energy estimate

Expected energy sensitivity of radio detection

60

LOPES energy reconstruction

bandwidth-normalized field strength at pivot point [µV/m/MHz]

- linear correlation with 20-25% combined LOPES-KASCADE-Grande energy resolution
 - radio probably better, limited by KASCADE-Grande energy uncertainty of ~20%
 - simulations: ~8% intrinsic

LOPES Coll., Phys. Rev. D 90 (2014) 062001.

 also works with interferometric analysis, yielding again ~20% uncertainty

F.G. Schröder et al. (LOPES Coll.), ARENA2012

Direction-dependence of geomagnetic emission

- the dominant emission contribution scales with sin(geomagnetic angle)
- this leads to directiondependent threshold – but with a well-defined characteristic

LOFAR unbinned analysis

- use Xmax distribution rather than just mean
- for each shower determine value

$$a = \frac{\langle X_{\text{proton}} \rangle - X_{\text{shower}}}{\langle X_{\text{proton}} \rangle - \langle X_{\text{iron}} \rangle}$$

 compare cumulative a-distribution with simulations based on various composition assumptions

S. Buitink et al. Nature 435 (2016) 70

LOFAR four-component model scan

Total fraction of light elements (p+He) in [0.38,0.98] at 99% C.L.