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Afterglow is long-lived (hours, days, months) multiwavelength
relic of GRB
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Observations of GRB afterglows cover orders of magnitude in
time and energy
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Figure 10. Observations of the afterglow of GRB 130427A spanning from the low-frequency radio to the 100 GeV LAT bands, interpolated to a series of coeval
epochs spanning from 0.007 days (10 minutes) to 130 days after the burst. Overplotted over each epoch is our simple forward+reverse shock model from standard
synchrotron afterglow theory, which provides an excellent description of the entire data set, a span of 18 orders of magnitude in frequency and 4 orders of magnitude
in time. The solid line shows the combined model, with the pale solid line showing the reverse-shock and the pale dotted line showing the forward-shock contribution.
The “spur” at 2~10'% Hz shows the effects of host-galaxy extinction on the NIR /optical /UV bands. Open points with error bars are measurements (adjusted to be
coeval at each epoch time); pale filled points are model optical fluxes from the empirical fit in Section 3.4. The inset at lower left shows a magnified version of the
radio part of the SED (gray box) at t = (.7 days.
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Many different models to explain broadband spectra and light
curves
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A complete reference of the analytical synchrotron external shock
models of gamma-ray bursts

He Gao®, Wei-Hua Lei”?, Yuan-Chuan Zou ", Xue-Feng Wu ¢, Bing Zhang *%<*



p. Background

RIK=N

Many different models to explain broadband spectra and light
curves

However, current afterglow studies assume extremely simple
model for CR electrons accelerated by shock
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p. Background
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Many different models to explain broadband spectra and light
curves

However, current afterglow studies assume extremely simple
model for CR electrons accelerated by shock

(Protons not even considered by afterglow community)

Mostly fine if (1) all relativistic particles are CRs, (2) acceleration
inefficient, (3) magnetic field is neglible
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(Particle-in-cell)

Per PIC simulations, this is not true
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Strong B-field turbulence in vicinity of shock can scatter
particles back into upstream region (< diffusive shock
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Pressure from UpS particles affects
inflow of plasma, which affects shock,
which affects acceleration, which
affects pressure from UpS particles...
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Figure 11. Temporal evolution of the post-shock particle spectrum
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Problem: PIC simulations can’t explore UHECR production
e Too much physics to model large volumes/times

Solution: parametrize microphysics with a Monte Carlo code
* Assume scattering prescription, & diffusion coefficient

Key assumptions of MC code used here:

 Bohm diffusion: particles accumulate 90° of deflection in
one gyroradius (A,¢, o< momentum)

 Magnetic turbulence: present, self-generated, able to
ensure above scattering

Can compute to arbitrary energies using personal computer,
since PIC simulations tell us how injection occurs



p. Modeling a GRB afterglow
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Use Blandford—McKee solution for 5 200
hydrodynamical base S 150 d
. . S 100 |
At select times (i.e. shock ages), ilg :
model DSA using Monte Carlo code % 50 f
O N
» ot

Calculate photon spectra

Three models discussed here:
* CR-only shocks (not a serious contender)
* Test particle shocks (inefficient CR acceleration)
* Nonlinear shocks (efficient CR acceleration)

Key parameters: E, = 10°3 erg, g, = 1073, €, = 0.3, 40% energy
transfer from protons to electrons, o, = 0
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Only protons/electrons (could do He/Fe, but haven’t yet)
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Modeling a GRB afterglow

Only protons/electrons (could do He/Fe, but haven’t yet)

Protons time-limited

Electrons loss-limited

Proton E__ = 10'7-10%% eV,
regardless of accel efficiency

If E,., increases or I, decreases,
E .. of protons increases; 10%° eV
plausible but (as yet) unconfirmed

DW+ (2016) (Submitted to ApJ)
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ﬂ Modeling a GRB afterglow

Only protons/electrons (could do He/Fe, but haven’t yet)

Protons time-limited

Electrons loss-limited

Proton E__ = 10'7-10%% eV,
regardless of accel efficiency

If E,., increases or I, decreases,
E .. of protons increases; 10%° eV
plausible but (as yet) unconfirmed
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Only protons/electrons (could do He/Fe, but haven’t yet)

DW+ (2016) (Submitted to ApJ)

. -16 /
If E,., increases or I, decreases, tops = 15 d
' I R B .

E .. of protons increases; 10%° eV '
ausible but ( 0 P ~12-9 -6 -3 0 3 6
plausible but (as yet) unconfirme Logyg E, [MeV]

Protons time-limited N g [T T T
e “°[NL }
\(i B -
Electrons loss-limited o —10 | E
o ks
17_1019 g —12
Proton E ., = 10-/-10* eV, <
regardless of accel efficiency — —14 |
L
Y
o
o
O
-



p. Summary
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If CR acceleration by relativistic shocks efficient, must consider
nonlinear interaction between shock & CRs

Shape of electron, photon spectra strongly affected by thermal
particles and by presence of precursor: no longer simple power
laws

Time-limited proton acceleration reaches 10*° eV, with hope
for 10%° eV if GRB parameters are right

Don’t forget low-energy particles. They’re interesting, too!
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PIC simulations, analytical work
suggest magnetic field depends
on position in shock frame:

* £.=0.1

* g, o< (-x) % UpS from shock

* g, o< x> DwS from shock

Computation times increased by
50x (!)

—Log,, (~x) [rgo]

Early results suggest E__ of protons unaffected (factor < 2)



