

Cosmic ray physics with the KASCADE-Grande observatory

Juan Carlos Arteaga-Velázquez* for the KASCADE-Grande Collaboration *Universidad Michoacana, México

Overview

- 1) Introduction
- 2) The KASCADE experiment
- 3) The KASCADE-Grande detector
- 4) Recent results
- 5) Summary

Introduction

Introduction

KASCADE-Grande - J.C. Arteaga

The KASCADE-Grande experiment

December 2003 - November 2012

1. Location: KIT-Campus North, Karlsruhe, Germany

KASCADE-Grande - J.C. Arteaga

The KASCADE experiment

Karlsruhe Shower Core and Array Detector

E= 100 TeV - 80 PeV

13 m

Ground array $(200 \times 200 \text{ m}^2)$

252 scintillator detectors

The KASCADE experiment

Karlsruhe Shower Core and Array Detector

E= 100 TeV - 80 PeV Ground array

Scintillator detectors

KASCADE: Unfolding elemental spectra

KASCADE: Unfolding elemental spectra

- Unfolding methods capable of reconstructing all-particle and elemental spectra

- Confirmation of the Knee feature at around 4-5 PeV

KASCADE: Unfolding elemental spectra

 Knee due to a break in the spectrum of light components

10 QGSJet 01 dl/dE. E²⁵ [m⁻²s⁻¹ sr⁻¹ GeV^{1.5}] 10 proton 10 helium carbon 107 106 108 primary energy E [GeV] • p QGSJet-II-02 GeV^{1.5} He Ĉ / (m² E^{2.5} 3D//LE 107 primary energy E / GeV 10 SIBYLL 2.1 [m⁻²s⁻¹sr⁻¹ GeV^{1.5}] 10 dJ/dE.E²⁵ proton 10 helium carbon 106 107 108

primary energy E [GeV]

8

KASCADE: rigidity dependence of individual knees?

KASCADE-Grande - J.C. Arteaga

The KASCADE-Grande detector $A = 0.5 \text{ km}^2$

$E = 1 \text{ PeV} - 10^{18} \text{ eV}$

W.D. Apel et al., NIMA 620 (2010) 490

KASCADE-Grande - J.C. Arteaga

The KASCADE-Grande detector

$E = 1 \text{ PeV} - 10^{18} \text{ eV}$

H. Falcke et al., Nature 435 (2005) 313

W.D. Apel et al., NIMA 620 (2010) 490

KASCADE-Grande - J.C. Arteaga

The KASCADE-Grande detector

1. Grande provides

N_{ch}: Number of charged particles

$E = 1 \text{ PeV} - 10^{18} \text{ eV}$

2. KASCADE provides

 N_{μ} : Number of muons

The KASCADE-Grande detector

1. Grande provides

N_{ch}: Number of charged particles

KASCADE-Grande - J.C. Arteaga

$E = 1 \text{ PeV} - 10^{18} \text{ eV}$

2. KASCADE provides

KASCADE-Grande: all-particle spectrum

KASCADE-Grande: all-particle spectrum

- Spectrum does not follow a simple power-law

Corrected for migration effects

KASCADE-Grande: all-particle spectrum

- Observation of two new structures

Corrected for migration effects

KASCADE-Grande: light/heavy mass groups

- Separation into a light and a heavy components

No correction for migration effects

KASCADE-Grande - J.C. Arteaga

KASCADE-Grande: light/heavy mass groups

Heavy Knee: 8 x 10¹⁶ eV

Light Ankle: 10¹⁷ eV

No correction for migration effects

KASCADE-Grande - J.C. Arteaga

KASCADE-Grande: Unfolding elemental spectra

D. Fuhrmann et al., Astrop. Phys. 47 (2013) 54

KASCADE-Grande: Mission Accomplished !!

- KASCADE-Grande has terminated data acquisiton
- Collaboration still continues detailed data analysis

KASCADE-Grande - J.C. Arteaga

KASCADE-Grande: Gamma ray searches

KASCADE-Grande - J.C. Arteaga

KASCADE-Grande: Gamma ray searches

- Limits on the ratio of diffuse gamma-ray flux to cosmic ray flux

KASCADE-Grande: Gamma ray searches

- Limits on the diffuse gamma-ray flux
 - Constrain origin of ICECUBE neutrinos.
 - Reject model of ICECUBE excess
 coming from < 20 kpc in the galaxy.

KASCADE and KASCADE-Grande mass group spectra

KASCADE-Grande - J.C. Arteaga

Combined KASCADE-

-Grande analysis

- Use data from both arrays in the same EAS reconstruction procedure.

- Advantages:

- Eliminates systematic differences due to distinct reconstruction procedures.
- Increases effective area
- Improves accuracy.
- Provides spectra and composition over the combined energy range.

Sven Schoo et al., paper in progess

KASCADE-Grande - J.C. Arteaga

Combined KASCADE-Grande analysis: all-particle spectrum

- Result extended over three energy decades
- Shape is retained

KASCADE-Grande - J.C. Arteaga

Combined KASCADE-Grande analysis: all-particle spectrum

- Result extended over three energy decades
- Shape is retained

- Post-LHC models: Lower flux at LE's

KASCADE-Grande - J.C. Arteaga

Combined KASCADE-Grande analysis: mass group spectra

- Result extended over three energy decades
- Main structures are still observed

KASCADE-Grande - J.C. Arteaga

Combined KASCADE-Grande analysis: mass group spectra

Post-LHC models

- Main structures confirmed

 Relative abundances are model dependent

Sven Schoo et al., paper in progess

KASCADE-Grande - J.C. Arteaga

Events located in **KASCADE**

Events located in KASCADE vs events in Grande

Events located in **KASCADE vs** events in **Grande**

Events located in **KASCADE vs** events in **Grande**

If core within KASCADE \rightarrow too many muons

If core within **Grande** \rightarrow too few muons

Sven Schoo et al., paper in progess

Cross checks using **Constant** Intensity Cuts

At high energies N_{μ} corresponding to the same intensity **drops with** radial distance.

Test of models: zenith angle dependence

 N_{μ} attenuation length: $N_{\mu} = N_{\mu,o} \exp[-X_o \sec(\theta)/\Lambda_{\mu}]$

J.C. Arteaga-Velázquez et al., paper in progess

Less attenuation in experimental **data** than in **MC**

- Problems with predicted Energy spectra of muons?

KASCADE-Grande - J.C. Arteaga

All-particle energy spectrum from S(500)

 $S(500) = \rho_{ch}(r = 500 \text{ m})$ is **independent** of mass of primary particle

KASCADE-Grande - J.C. Arteaga

All-particle energy spectrum from S(500)

KASCADE Cosmic Ray Data Center

A. Haungs et al., J. of Phys. Conf. S. 632 (2015) 012011

open access to research data https://kcdc.ikp.kit.edu

KIT | IKP | HOME | Impressum | login

KASCADE-Grande - J.C. Arteaga

Summary

Limits on the diffuse flux of VHE γ rays have been established.

> All-particle, light and heavy spectra were obtained for 3 energy decades.

> > Combined analysis confirms structures of spectra.

Post-LHC models do not describe the measured data.

Some problems might be due to predicted muons.

Thank you!

KASCADE-Grande Collaboration

Universität Siegen Experimentelle Teilchenphysik C.Grupen

Universität Wuppertal Fachbereich Physik D. Fuhrmann,

University Trondheim, Norway

IFSI, INAF and University of Torino M. Bertaina, E. Cantoni, A. Chiavassa, F. Di Pierro, C. Morello, G. Trinchero

ک

http://www-ik.fzk.de/KASCADE-Grande/

Institut für Kernphysik & Institut für Experimentelle Kernphysik KIT - Karlsruhe Institute of Technology

W.D.Apel, K.Bekk, J.Blümer, H.Bozdog, F.Cossavella, K.Daumiller, P.Doll, R.Engel, J.Engler, M.Finger, B.Fuchs, H.J.Gils, A.Haungs, D.Heck, D.Huber, T.Huege, D.Kang, H.O.Klages, K.Link, M.Ludwig, H.-J.Mathes, H.J.Mayer, M.Melissas, J.Milke, J.Oehlschläger, N.Palmieri, T.Pierog, H.Rebel, M.Roth, H.Schieler, S.Schoo, F.G.Schröder, H.Ulrich, A.Weindl, J.Wochele, M.Wommer

