TA Spectrum Summary

Dmitri Ivanov University of Utah 2016/10/11, Kyoto, JP

Outline

- Telescope Array (TA) Experiment
- TA Spectrum Measurements
 - Surface Detector (SD)
 - Fluorescence Detector (FD) Mono
 - TA Low Energy Extension (TALE) Fluorescence and Cherenkov
- Combined Spectrum
- Conclusions

TA FD

TA Surface Detector

- Powered by solar cells; radio readout.
- In operation since March, 2008.
- Self-calibration using single muons.
- Energy deposited by cosmic ray shower particles is measured in VEM units (Vertical Equivalent Muon = energy deposited by a vertical minimum ionizing muon)

Surface Detector Event

SD Energy 1/2

- A look-up table made from the Monte-Carlo
- Event energy (E^{TBL}) = function of *reconstructed* S800 and sec(θ)
- Energy reconstruction $\leftarrow \rightarrow$ interpolation between S800 vs sec(θ) contours of constant values of E^{TBL}
- The overall energy scale locked to the fluorescence detector

SD Energy 2/2: Energy Scale Set

- Energy scale locked to the FD to reduce the systematic due to the model
- Use events well reconstructed separately by SD and FD in hybrid mode:
- $SD \cap [BR U LR U MD Hybrid]$ $E^{FINAL} = E^{TBL} / 1.27$
- TOP figure: E^{FINAL} vs E^{FD} scatter plot
- BOTTOM figure: histogram of E^{FINAL} / E^{FD} ratio
- 2008/05/11-2013/05/04

Exposure from Monte Carlo

 Detailed Monte Carlo used for exposure calculation in all measurements of TA

Fluorescence Mono Analysis

Time fit

Profile fit

TA Low Energy Extension (TALE)

- Study the 10¹⁶ and 10¹⁷ eV decades with a hybrid detector.
 - End of the rigidity-dependent cutoff that starts with the knee (at 3×10^{15} eV).
 - The second knee
 - The galactic-extragalactic transition
- High energy physics measurements:
 - $\sigma(p-air)$ and $\sigma(p-p)$ from LHC energy (10¹⁷) to 10^{19} eV.
- Need to observe from 3x10¹⁶ eV to 3x10²⁰ eV all in one experiment. That is TA and TALE.

TALE FD

- Add 10 telescopes at the Middle Drum site, looking from 31°-59° in elevation.
- Operate in conjunction with the TA Middle Drum FD.

TALE Infill Array

- Add infill array (400m and 600m spacing) for hybrid and stand-alone observation.
- Also add counters to build out main TA SD array (1200m separation).
- 105 counters in all, 16 are now taking data which is currently being analyzed

Events per year

TALE Events

TALE Cherenkov vs. Fluorescence

Unexpected result: many Cherenkov events are seen as tracks (most land ~0.5 km from FD). Use profile constrained reconstruction. Cherenkov light is bright \rightarrow can go lower in energy than expected.

TALE DATA/MC Comparisons

Data: Inverse Angular Speed

16

TA Spectra

- Energy spectrum measurements available in TA for each type of detection technique
 - Often, more than one analysis exists
- To form a combined spectrum, we choose analyses with best statistics and energy resolution for their respective energy ranges

TA Resolution and Exposure as Function of Energy

TA SD, $E > 10^{18.2} eV$

Add TA BR/LR Mono, $10^{17.2}$ eV< E < 18.8 eV

Add TALE Fluorescence and Cherenkov, 10^{15.5} eV< E < 18.3 eV

Combine the TA spectrum

4 to 5 features, over nearly 5 orders of magnitude in energy

Standard SD spectrum analysis

For details on BR/LR Mono spectrum, see Astropart. Phys. 80 (2016) 131-140

For details on TALE Combined spectrum see T. AbyZayyad presentation at this conference

- From 2008/05/11 to 2015/05/11
- Cuts
 - Zenith angle < 45 degrees
 - N_{SD} >= 5
 - Distance of the shower core from the border of the array > 1200m
 - Geometry, LDF Chi2 / d.o.f. < 4
 - Pointing direction uncertainty < 5 degrees
 - S800 fractional uncertainty < 25%
 - $E > 10^{18.2} eV$
 - ~6300 km² sr yr exposure above 10^{19.0} eV

Berezinsky E_{1/2} and GZK Cutoff

Consistent with proton propagation on CMB

Declination dependence of SD spectrum

 Position of the 2'nd break point appears to be dependent on the declination band

• \sim **3.9** σ effect

- This result uses events up to 55 degrees in zenith angle
- See TA/Auger working group report for comparisons with Pierre Auger in different declination bands

Auger / TA (as of ICRC-2015)

- Significant discrepancy with Pierre Auger above ~25 EeV
- Good agreement everywhere else, down to 10^{17.5} eV, after Auger energies were rescaled by 10%
- For current status, see TA/Auger spectrum working group report

Combined TA with Other Experiments

Conclusions

- We measured spectrum over ~5 orders of magnitude in energy, starting at $10^{15.5}$ eV
- One experiment, one energy scale, consistent with proton composition at highest energies
- 4 Features:
 - Low Energy Ankle at ~10^{16.3} eV
 - 2^{nd} knee at ~ $10^{17.2}$ eV
 - Ankle at $\sim 10^{18.7}$ eV
 - GZK Break at ~10^{19.8} eV
- Evidence of TA spectrum declination dependence at highest energies
- Good agreement with HiRes, but discrepancy with Pierre Auger at ~25 EeV (energy rescaling doesn't help)