Measurements of the mass composition of UHECRs with the Pierre Auger Observatory

PIERRE AUGER OBSERVATORY

Matthias Plum for the Pierre Auger collaboration

RWTH Aachen University

12.10.16

UHECR16 – Kyoto, Japan

Outline

- Pierre Auger Observatory
- Composition measurements
 - X_{max} moments
 - FD and SD correlation study
- Summary and outlook

Hybrid Detector of UHECRs

- 1660 water Cherenkov stations
 - Study lateral shower signal on the ground
- 24 + 3 fluorescence telescopes
 - Study longitudinal shower profiles in the atmosphere
- Hybrid detection allows extensive studies of the arrival direction, energy and chemical composition of UHECRs

High Elevation Auger Telescopes (HEAT)

- Low energy telescope enhancement next to regular FD station 'Coihueco'
- Lower energy threshold down to 10¹⁷ eV
- 30° tiltable telescopes
 - Upward mode (Normal operation)
 - Downward mode (especially systematic studies)

Virtual telescope HECO (HEAT + Coihueco)

- Low energy cosmic ray produce less fluorescence light
 - Only near air shower can be studied
- Extended field of view is needed to study X_{max}

FD Data Selection for X_{max} Study

- Regular FD telescopes (LL,LM,LA,CO)
 - 01.12.2004 and 31.12.2012
 - >10^{17.8} eV

- Virtual telescope HECO
 - 01.06.2010 and 15.08.2012
 - 10¹⁷ to 10^{18.3} eV

Quality Selection		
Data and detector status	 Good data periods and camera calibrations Measured aerosol profile Reject high aerosol periods (VAOD @ 3 km < 0.1) Reject high cloud contamination 	
X _{max} and energy reconstruction	 Hybrid geometry reconstruction Good X_{max} and energy reconstruction Observed X_{max} with expected resolution < 40 g/cm² Reduced χ² of profile fit normal distributed 	
Field of view	 Unbiased dataset with fiducial field of view analysis 	
НЕСО	 Considered higher trigger probability of Fe-like events in SD SD, HEAT and CO must be able to trigger simultaneously 	

X_{max} Systematic Uncertainties & Resolution

- Reconstruction bias and detector resolution
- SD-FD timing, calibration and telescope alignment
- Analysis
- Atmospheric uncertainty and fluorescence light yield

Standard vs HECO X_{max} Moments

- Standard FD and HECO are statistically independent data sets
- Small systematic shift of the mean (~7 g/cm²) Under investigation
- Overall good agreement inside the uncorrelated systematic uncertainty

X_{max} Moments

Combination of the data sets shows a change in the mass composition at $^{\sim}10^{18.3}$ eV

Ln A Moments QGSJetII-04

Low energy: High energy:

largest mass dispersion, dominated by intermediate and heavy primaries from the lightest at $10^{18.3}$ eV to heavier with less dispersion of masses

Ln A Moments EPOS-LHC

Low energy: High energy:

largest mass dispersion, dominated by intermediate and heavy primaries from the lightest at $10^{18.3}$ eV to heavier with less dispersion of masses

FD & SD Correlation Analysis

Check model independent composition observable by using the hybrid detector advantage

'Ankle' region: Log(E/eV) = 18.5 - 19.0

Basic observables for correlation analysis:

FD: X_{max}, scaled to 10 EeV

called X* max

SD: signal at 1000 m from the core,

S(1000), scaled to 10 EeV, 38°

called S*₃₈

Correlation $r_G(X^*_{max}; S^*(38))$ in Monte Carlo

Correlation between X*_{max} and S* (38) depends on the purity of the primary beam ◆ Use ranking coefficient r_G [R. Gideon, R. Hollister, JASA 82 (1987) 656]

Correlation $r_G(X^*_{max}; S^*(38))$ in Monte Carlo

General characteristics of air showers:

- Heavier nuclei produce shallower showers with larger ground signal
- Minor model dependency

More negative correlation

→ more mixed composition

Correlation $r_G(X^*_{max}; S^*(38))$ in data

Correlation is significantly negative

$r_G(X^*_{max}; S^*(38))$ for protons:			
Epos-LHC	QGSJetII-04	Sibyll 2.1	
0.00	+0.08	+0.07	
Difference to data			
5 σ	8 σ	7.5 σ	

Sys. uncertainty from X^*_{max} and S^* (38) $\sigma_{sys}(r_G) \leq 0.01$

Composition is mixed, nuclei with A>4 are needed to explain data

$r_G(X^*_{max}; S^*(38))$ vs. $\sigma(Ln A)$ from QGSJetII-04

Use $r_G(X^*_{max}; S^*(38))$ to estimate the dispersion $\sigma(Ln A)$ of primary masses:

$$\sigma(\operatorname{Ln} A) = \sqrt{\langle \operatorname{Ln}^2 A \rangle} - \langle \operatorname{Ln} A \rangle^2$$

$$\langle \operatorname{Ln} A \rangle = \sum_i f_i \operatorname{Ln} Ai$$

$$\langle \operatorname{Ln}^2 A \rangle = \sum_i f_i \operatorname{Ln}^2 A_i$$

$$f_i \text{ relative fractions of masses } A_i = 1; \dots; 56$$

Data are compatible with dispersion of masses $\sigma(Ln A) \ge 1.1$

$r_G(X^*_{max}; S^*(38))$ vs. $\sigma(Ln A)$ from EPOS-LHC

Use $r_G(X^*_{max}; S^*(38))$ to estimate the dispersion $\sigma(Ln A)$ of primary masses:

$$\sigma(\operatorname{Ln} A) = \sqrt{\langle \operatorname{Ln}^2 A \rangle} - \langle \operatorname{Ln} A \rangle^2$$

$$\langle \operatorname{Ln} A \rangle = \sum_i f_i \operatorname{Ln} Ai$$

$$\langle \operatorname{Ln}^2 A \rangle = \sum_i f_i \operatorname{Ln}^2 A_i$$

$$f_i \text{ relative fractions of masses } A_i = 1; \dots; 56$$

Data are compatible with dispersion of masses $\sigma(Ln A) \ge 1.0$

Correlation Systematic Uncertainties

Change proton-air interactions (study with CONEX 3D)

[T. Bergmann et al., ApP 26 (2007) 420, R. Ulrich et al., PRD 83 (2011) 054026]

- Modified parameters:
- cross-section elasticity
- pion charge ratio multiplicity

Only cross-section change result in r_G decrease by \leq -0.06, but $\Delta r_G \approx 0$ (0°-45° Zenith) and $\Delta r_G \approx -0.1$ (45°-65° Zenith) -

Change of muon production factor by hadronic models

[G. Farrar for the Pierre Auger Collaboration (2013) arXiv:1307.5059, A. Aab et al., PRD 91 (2015) 032003]

- re-weighting of muons at ground by factor 1.3
 - $r_{\rm G}$ decrease by ≤ 0.03

Only small changes compared to difference between data and protons

Summary

- X_{max} moments are presented from 10^{17} eV to $10^{19.5}$ eV
- Ln A moments indicate a change in the composition of UHECRs:
 - From heavy to light to heavy composition
- Correlation analysis of FD and SD events are incompatible with pure composition at the 'ankle'
- Cosmic ray composition is mixed with a **significance** > **5** σ independent of the hadronic interaction model in the energy range $10^{18.5}$ eV to $10^{19.0}$ eV
 - Nuclei A>4 are needed to describe the data

Outlook

- Publication of X_{max} moments including HECO events in preparation
- Additional data for both analysis will improve the results in the near future

Surface Detector

- Array of 1660 water autonomous Cherenkov detectors
- Covers 3000 km² on an 1500 m hexagonal grid
- 12 m³ pure water
- 3 PMTs per station
- Samples lateral shower profile
- Study energy and arrival direction
- Duty cycle 100%

Fluorescence Detector

- 27 telescopes at the border of the SD array
- Segmented mirror with 13 m²
- 440 PMTs with each 1.5° field of view
- Each telescope 30° x 30° field of view
- Samples longitudinal shower profile
- Study energy, arrival direction and shower profile
- Duty cycle ~15% (only clear and moonless nights)

X_{max} Field of View Analysis

X_{max} End-to-End Study

SD Trigger Probability

Correlation Study Data Selection

- SD Selection
 - at least 5 working stations around the station with the highest signal
 - exclusion of events with stations having saturated signal traces
- FD Selection
 - same as X_{max} analysis

Correlation as Function of Energy

- Only minor changes in simulated r_G with energy is expected for constant composition
- Binned data are consistent with a constant r_G with $X^2/dof = 6.1/3$