Contribution ID: 69

A novel study connecting UHECRs, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messenger

Thursday 13 October 2016 10:50 (20 minutes)

We present a novel study connecting UHECRs, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by selecting gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against UHECRs detected by the Pierre Auger Observatory and the Telescope array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard {\it Fermi}-LAT (2FHL) objects of blazars of the high synchroton peak type. This corresponds to a deviation from the null-hypothesis of 3.26σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type, which we propose here as ultra high energy cosmic ray and neutrino emitters.

Presentation type

oral

Primary author: COENDERS, Stefan (Technische Universität München)Presenter: COENDERS, Stefan (Technische Universität München)Session Classification: Oct.13AM2