Summary of Cosmic Ray Spectrum and Composition below 10¹⁸ eV

Andrea Chiavassa Università agli Studi di Torino & INFN

- $10^{14} < E < 10^{18} \text{ eV}$
 - E< 10^{17} eV \rightarrow surface, multicomponent arrays
 - → Cherenkov experiments
 - E> 10^{17} eV \rightarrow surface, multicomponent arrays
 - → radio experiments
 - → low energy extensions of UHE experiments
- Energy calibration of the Surface arrays
 - Calibration without EAS simulation
 - Low energies \rightarrow cross calibration with direct measurements
 - → moon shadow
 - High energies \rightarrow hybrid experiments
 - Calibration using EAS simulations depends on:
 - Hadronic Interaction Models
 - Choice of the mass of the Primary Particle
- Mass measurements
 - Correlation between different EAS components/parameters
 - Calibration based on EAS simulation (Hadronic Interaction Models dependence)
 - E>10¹⁷ eV \rightarrow X_{max} \rightarrow Fluorescence light and Radio detectors

Where do we were ~25 years ago

- Spectrum: one spectral feature
- Experiments: multicomponent arrays were at the beginning of the data taking.
- EAS simulation: almost every experiment had his own code.

Fig. 19. Spectrum of cosmic ray. The symbols, • and ○ are for 1 km² and 20 km² array of Akeno, and △ and ◇ are Fly's Eye and Haverah Park data, respectively. The dotted curve indicates Moscow State University data.

From T. Kifune rapporteur talk @1990 ICRC (Adelaide)

Roughly ten years later

• Composition: only first momentum (mean values) of the distributions were used

What has changed nowadays?

- Experiments
 - High precision, multicomponent EAS arrays
 - Hybrid experiments
- EAS simulation
 - CORSIKA with different high and low energies hadronic interaction models
- Spectrum Measurements
 - Hardening $\sim 10^{16}$ eV; Steepening $\sim 10^{17}$ eV
 - Differences in the absolute fluxes measurement \rightarrow attributed to energy calibration
- Composition Measurements
 - Multi parameters statiscal analysis
 - Event by event mass group separation J

- mass groups spectra

Summary of Spectra Measurements

- Flux differences due to energy calibrations.
- Spectral shapes agree

The spectrum above the knee cannot be described by a single slope power law

Ice Top

Steepening at 130±30 PeV

TALE

Fluxes obtained with experiments calibrated by means of Pre-LHC hadronic interaction models

Experiments calibarted with QGSJet0%

Experiments calibarted with Sibyll2.1

Post-LHC Models

Chemical Composition Results

- We have moved from the study of the moments of the distribution of experimental observables to the one of the spectra of primaries mass groups. Obtained either by:
 - Statistical analysis
 - Event by event classification

- N_e vs N_u spectra unfolding
- KASCADE & KASCADE-Grande results.
- Both data sets are analyzed with the QGSJetII-02 hadronic interaction model

IceTop – IceCube

EAS simulation: SIBYLL2.1

H & He steeper spectraO & Fe harder spectra

• Tunka-133 spectra of the light and heavy components

LOFAR → EAS radio detection

ullet Hybrid approach: simultaneous fit of radio (X_{max}) and

particle (E) data

• Applying strict cut

 \rightarrow 118 events

High resolution

$$\rightarrow \sigma(X_{max}) \approx 16 \text{ g cm}^{-2}$$

$$a = \frac{\langle X_H \rangle - X_{shower}}{\langle X_H \rangle - \langle X_{Fe} \rangle}$$

<X_H> and <X_{Fe}> based on QGSJetII-04 Cumulative probability density function

- ✓ Good data description achieved with a four component model (H, He, N, Fe)
- ✓ Light Elements (H+He) dominates $\rightarrow 0.38 < light_{fraction} < 0.98$
- ✓ Best fit value $l_f = 0.8$

event by event selection \rightarrow mass groups spectra

KASCADE & KASCADE-Grande - N_u / N_{ch} ratio

ARGO-YBJ + WFCTA- ldf + shower image

Different definition of contaminations from other mass groups

E-3 spectra for each element

$$\varepsilon = \frac{N_i}{N_{elem}}$$

Events are sampled according to a composition model

H&He spectrum measured by the ARGO-YBJ+WFCT hybrid experiment.

$$E_k = 700 \pm 230 \pm 70 \text{ TeV}$$

 $\gamma_1 = -2.56 \pm 0.05$ $\gamma_2 = -3.24 \pm 0.36$

- Steepening in the all partcile spectrum (2.1σ) near to 10¹⁷ eV
- Feature due to heavy component (3.5σ)
- Hardening of the light component at $10^{17.08}$ eV(5.8 σ)
- Slope change from $\gamma=3.25$ to $\gamma=2.79$

Integral flux above the change of slope $\rightarrow \sim 10^{-7} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ $\rightarrow \sim 2\text{-}4\text{x}10^{15} \text{ eV}$

> CREAM H CREAM He CREAM H+He ARGO PRD 2012 KASCADE H Sing Had

Tibet Asγ H

10¹³

EAS-TOP & MACRO He

10¹⁴

EAS-TOP H Sing Had ARGO PRD 92 (2015) 092005 KASCADE-Grande Light

dl/dE $E^{2.5}$ (m⁻² sr⁻¹ s⁻¹ eV^{1.5})

10¹⁵

10¹⁴

Combined KASCADE & KASCADE-Grande analysis \rightarrow one code to reconstruct events.

All particle, light and heavy spectra measured over 3 orders of magnitude

Spectral features are confirmed

- Toy Monte Carlo to investigate the effects of selecting a fraction of events on a power law spectra \rightarrow can we articificially introduce spectral features?
- Generate events on a single slope power law or on a spectrum with a change of slope → select randomly a fraction of events → fit the output spectrum.
- Single power law \rightarrow even with low efficiency (50%) \rightarrow in 1000 samples (106 each, $E_{max} = 100 E_{min}$) was never introduced a spectral feature

• Spectrum with a «knee» (γ_1 =-2.7; γ_2 =-3.0)

Shift a of the knee position $\longrightarrow \Delta E_{knee} = \frac{E_{knee}^{true} - E_{knee}^{rec}}{E_{knee}^{true}}$

very rarely (~5‰) a 60-80% shift of the fitted knee energy can be introduced

Conclusions

- Last generation experiments brought improvements to our knowledge of cosmic rays spectrum and composition below $10^{18}~\rm eV$
 - Spectral features above the knee
 - Steepening of the light component spectrum ~4 PeV (and/or below?)
 - Steepening of the heavy component spectrum ~80 PeV
- The key points were
 - High resolution measurements of different EAS characteristics
 - Improvments in the EAS simulation
- Careful studies of the systematics are mandatory. Both the experimental ones and those due to the analysis strategies.
 - Statistical approaches
 - Give an estimation of how far from the best fit values are different scenarios?
 - Event by event classification
 - Always show the mass groups selection efficiency, and its energy dependence
- Further improvments requires:
 - Spectra of individual mass groups (elements??). Main limitation will come from EAS development fluctuations.
 - High statistics (km²) + high resolution + large dynamic range experiments