Extragalactic sources and propagation, including constraints on extragalactic magnetic fields

Arjen van Vliet Rafael Alves Batista Günter Sigl

UHECR2016

Kyoto, Japan, 13/10/2016 Radboud University

Measurements on UHECRs

SPECTRUM ARRIVAL DIRECTION E[eV] Telescope > 10¹⁹ eV 10¹⁹ s.] Arrav s⁻¹ sr⁻¹ eV²)) × sr' 24 × **n**-2 log₁₀(E³ J /(m⁻² × 10²⁴ TA SD 7 year (ICRC 2015) 23.5 [eV² BR-LR Mono 7 year (ICRC 2015) TALE Bridge (ICRC 2015) 23 7 TALE Čerenkov (ICRC 2015) х TA Combined (ICRC 2015) ш 22.5 Auger (ICRC 2015 preliminary) 16 Telescope Array 18 19 20 20.5 17.5 19.5 20 18 18.5 19 log₁₀(E/eV) log (E/eV) Auger Auger, PoS (ICRC2015) 271 PoS (ICRC2015) 035

COMPOSITION Std. Deviation of X_{max}

Syst.

proton

iron

20.0

19.5

Telescope Array and Auger, Astrophys. J. 794 (2014) 2, 172

13/10/16

18.5

 $\log_{10}(\mathbf{E}/\mathbf{eV})$

19.0

EPOS-LHC

OGSJetII-04

Sibvll2.1

AUGER.

18.0

17.5

UHECR secondaries

ASTROPHYSICAL

ISOTROPIC DIFFUSE

NEUTRINO FLUX

y-RAY BACKGROUND

IceCube, PoS (ICRC2015) 1081

Fermi LAT, Astrophys. J. 799 (2015) 86

Birth supernovae pulsar black hole AGN

General picture for extragalactic cosmic rays

Decay processes

radioactive decay spallation

charged particle

Propagation

magnetic fields interactions

> Detection cosmic ray air shower

Galactic deflection magnetic field interactions

Image courtesy Daniel Kuempel

Extragalactic environment

- Source distribution following the Large-Scale Structure (LSS)
- Deflection in the extragalactic magnetic (EGMF)

Energy-loss interactions

- Pair production
- Photopion production ullet
- Photodisintegration \bullet
- Nuclear decay ightarrow
- **Redshift** losses
- Electromagnetic ullet

cascade propagation

on CMB and EBL

13/10/16

Galactic propagation

- Deflections in the galactic magnetic field
- Example: GMF model by Jansson and Farrar 2012
 - Large-scale regular field
 - Large-scale random (striated) field
 - Small-scale random (turbulent) field

G. Farrar, Comptes Rendus Physique 15 (2014) 339-348

SourceModel

Spectrum Evolution

Direction

- A public astrophysical simulation framework for propagating ightarrowextraterrestrial ultra-high energy particles
- Initial release was on 23/03/2016 ullet
- Available from \bullet

VISPA

<u>crpropa.desy.de</u>

Online installation on \bullet

Modular redesign of the code structure ullet

Galactic

Example simulation

• Source distribution: following LSS from Dolag et al. 2005

Dolag et al. 2005

Miniati et al. 2004

Jansson and Farrar 2012

- Source density: 10⁻³ Mpc⁻³
- EGMF structure:
- EGMF strength:
- GMF model:
- EBL model:
- Injection spectrum:
- Cutoff energy:
- Injection index:

Gilmore et al. 2012 $\frac{dN}{dE} \propto \begin{cases} (E/E_0)^{-\alpha}, & E < E_{cut} \\ (E/E_0)^{-\alpha} \exp(1 - E/E_{cut}), & E > E_{cut} \end{cases}$ $E_{cut} = 780 \text{ EeV}$ $\alpha = 1.5$

Arrival directions

Angular power spectra

- Measure for the anisotropy
- Dipole amplitude:
 ~0.06
- 99% CL isotropy
 lines for full sky
 coverage

Spectrum and composition

- 4D includes cosmological effects and adiabatic energy losses due to expansion of the universe
- Spectrum: only small differences
- Composition for *E*<10 EeV:
 - 1D heavier than 4D; increased path length due to EGMF
 - 4D heavier than 3D; adiabatic energy losses

Highly magnetized voids

- MHD simulations of structure formation
- Large differences between EGMF models

Average deflections

- Strong magnetic fields in voids
- Deflections of 100 EeV protons closer than
 ~10 Mpc relatively small (≤ 5°), depending on
 source distribution and magnetic seed power
 spectrum
- Deflections of iron nuclei would be very large
 (≥ 30°) even for nearby sources

Full spectrum + composition

3

Qul S EG-Minimal

EG–PCS

EG-UFA

Fe

 Extragalactic combined fit model + galactic cosmic rays from supernova remnants and Wolf-Rayet star explosions

Secondary photons and neutrinos

- Source evolution: GRBs, AGNs, SFR
- v's and y's affected strongly

10²⁵

10²⁴

10²³

 10^{22}

10

sr⁻¹]

 $E^{3}dN/dE$ [eV² m⁻² s⁻¹

At tension with Fermi LAT and \bullet IceCube results

GRBs

SFR

TΑ

Summary

- CRPropa 3 up and running, available at <u>crpropa.desy.de</u>
- Allows for spectrum, composition and arrival direction predictions for UHECRs as well as for secondary neutrinos and photons
- 3D/4D effects can affect the expected composition
- Expected average deflection at 100 EeV small for protons, but can be large for iron nuclei

Backup slides

1D, 3D and 4D

• 1D:

- Redshift effects included
- Magnetic field deflections not included
- 1D source evolution
- Particle (almost) always hits observer
- 3D:
 - Redshift effects not included
 - Magnetic field deflections included
 - 3D source distribution
 - Particle can miss observer in space
- 4D:
 - Redshift effects included
 - Magnetic field deflections included
 - 3D source distribution + evolution
 - Particle can miss observer in space and time

13/10/16

Reference scenario

- Homogeneous distribution of identical sources
- Injection spectrum: $\frac{dN}{dE} \propto E^{-\alpha} \exp(-E/ZR_{cut})$
- Maximum energy: $R_{cut} = Z^* 200 EV$
- Injection index: $\alpha = 2.5$
- Source evolution: comoving
- Initial CR type: protons

Reference scenario

 Already some tension with Fermi LAT isotropic

10²⁵

10²⁴

10²³

 10^{22}

10

 $E^3 dN/dE~~$ [eV m $^{-2}$ s $^{-1}$ sr $^{-1}$]

diffuse γ-ray background

Reference model

 10^{19}

E[eV]

Auger

 10^{18}

Maximum energy dependence

• $50 \le R_{cut} \le 800 \text{ EV}$

10²⁵

10²⁴

10²³

 10^{22}

10

sr⁻¹]

 $E^3 dN/dE$ [eV² m⁻² s⁻¹

- v's only affected for E>10 EeV
- γ's only slightly affected

 10^{9}

Spectral index dependence

- $2.0 \leq \alpha \leq 2.9$
- v's affected similarly as CRs ightarrow
- γ's only slightly affected

10²⁵

10²⁴

10²³

10²² 10¹⁷

 sr^{-1}]

 $E^3 dN/dE$ [eV² m⁻² s⁻¹

Source evolution dependence

- Multiplied by $(1+z)^m$, for $-6 \le m \le 6$
- m = o: BL Lacs
- m = -6: HSP BL Lacs

10²⁵

10²⁴

 10^{23}

10²² 10

sr⁻¹]

 $E^3 dN/dE$ [eV² m⁻² s⁻¹

v's and y's affected strongly \bullet

Only $m \approx -6$ allowed by Fermi LAT \bullet

 10^{9}

Source evolution models

GRBs, AGNs, SFR

10²⁵

10²⁴

10²³

 10^{22}

10

sr⁻¹]

 $E^{3}dN/dE$ [eV² m⁻² s⁻¹

- v's and y's affected strongly ightarrow
- None allowed by Fermi LAT ightarrow

SFR

TΑ

CR mass dependence

- Initial CR: protons vs iron
- Heavier primaries reduces ightarrowneutrino and photon flux

10⁸

10

10⁴

10³

10²

 10^1

10⁰ [10⁻

-

٦⁻ 10^{6}

S 10⁵

 $E^2 dN/dE$ [eV m⁻²

 10^{8}

13/10/16

AvV - EG sources and propagation

1D: Combined fit

Auger, arXiv:1509.03732

Mixed composition combined fit

- By di Matteo et al. for the Pierre Auger Collaboration, arXiv:1509.03732
- Comoving source evolution
- *y* = 0.73
- *R*_{max} = 3.8 EV
- 98.69% Nitrogen, 1.31% Iron

Pair production

$$^{A}N + \gamma \rightarrow ^{A}N + e^{+} + e^{-}$$

• Energy loss per interaction $\sim 2m_e/m_p \approx 0.1\%$

 \rightarrow continuous energy loss

Most important reaction for creation of secondary photons in the TeV range

Photopion production

$$^{A}N + \gamma \rightarrow ^{A-1}N' + p + \pi^{0} \rightarrow ^{A-1}N' + p + \gamma \gamma$$
$$\rightarrow ^{A-1}N' + n + \pi^{+}$$

- Event generation, mean free path and energy loss from SOPHIA
- "Simulates the interactions of nucleons with photons over a wide range in energy"
- "The simulation of the final state includes all interaction processes which are relevant to astrophysical applications"
- "Includes resonance excitation and decay, direct single pion production and diffractive and non–diffractive multiparticle production"

Photodisintegration and decay ^AN + $\gamma \rightarrow$ ^{A'}N'+X(n, p, ...)

- PD cross sections for 183 isotopes from TALYS + extensions for A<12, 2200 excl. channels
- All isotopes with lifetime >2s, A \leq 56 and Z \leq 26
- Nuclear decay for 434 isotopes from NuDat2 + alterations to correctly account for electron capture

Photon backgrounds

• CMB

• EBL, 6 different models

Extragalactic background light at z=0

Extragalactic background light at z=1

Galactic propagation

 Cosmic ray propagation through magnetic fields can be modelled on any scale

• From the CRPropa 3 paper:

	~				
	General magnetic fields	Galactic magnetic fields			
Uniform	Magnetic field is a position independent sin-	Toroidal	Toroidal halo field model adopted from [24, 25].		
	gle vector magnetic field.	Halo			
Grid	Provides a periodic magnetic field grid with	Logarithmic	Magnetic field model of axisymmetric (ASS) or		
	trilinear interpolation, equal spacing, and	Spiral	bisymmetric (BSS) logarithmic spiral shape.		
	different sizes along each axis.	Pshirkov	Pshirkov et al. magnetic field model, consisting		
Modulated	Modulates a large scale vector field by a pe-	2011	of a large-scale regular (disk and halo) field [16].		
Grid	riodic small scale scalar field.		The axisymmetric (ASS) and the bisymmetric		
Turbulent	A random magnetic field with a turbulent		(BSS) disk model can be chosen.		
	spectrum [23].	JF 2012	Implementation of the Jansson & Farrar mag-		
			netic field model, consisting of a large-scale reg-		
			ular and random (striated) field and a small-		
			scale random (turbulent) field $[10, 15]$.		

3D: Lensing method

- Lenses obtained through backtracking
- Stored in matrices dependent on rigidity *E*/*Z*
- Map discrete directions outside the galaxy to discrete observed directions on Earth

Galactic lensing method

 Map discrete directions outside the galaxy to discrete observed directions on Earth

Galactic deflection matrix

• Backtrack ~10⁶ UHECRs per rigidity, 100 rigidity bins

Galactic deflection matrix

 $m_{i,j}$ is probability that particle which enters galaxy in pixel *j* is observed on earth in pixel *i*

Get observed distribution by matrix multiplication

$$M_E \cdot \vec{v} = \vec{o}$$

$$\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{2}{4} & \frac{1}{4} & 0 \\ 0 & \frac{2}{4} & \frac{1}{4} \end{pmatrix} \cdot \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{3}{12} \\ \frac{5}{12} \\ \frac{2}{12} \end{pmatrix}$$

AvV - EG sources and propagation

Uncertainties

R. Alves Batista, D. Boncioli, A. di Matteo, AvV and D. Walz, "Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp", JCAP 1510 (2015) no.10, 063, arXiv:1508.01824

Figure 8. Comparison of PSB and TALYS photodisintegration models for hard nitrogen injection.

EGMF constrains

G. Sigl, "Astroparticle Physics: Theory and Phenomenology"

Fig. 4.8 Summary of observational constraints on cosmological fields in the plane of comoving coherence length and r.m.s. field strength are presented as shaded areas. At lengths below the resisitive length scale given by Eq. (4.130) magnetic fields would be damped within a Hubble time, the CMB constraint is from Ref. [181], the Faraday rotation limits are from Ref. [178, 179], the horizontal upper limit is from the contribution to radiation, see Eq. (4.194), and the Zeeman effect on spectral lines, and the coherence length can not be larger than today's Hubble scale. A possible lower limit of the form of Eq. (8.79) [182] (Fermi GeV blazars) will be discussed in Sect. 8.1.8, but is not generally agreed upon. Magnetic fields in galaxies and galaxy clusters are shown as white shades. The relation Eq. (4.141) for MHD turbulence is shown as red band. Dashed and solid blue lines show the evolution of maximally helical and non-helical fields following Eq. (4.146) and (4.148), respectively, with initial comoving strength 3×10^{-6} G and coherence length given by the comoving Hubble scale at the electroweak and QCD phase transition, see Eq. (4.121), shown as arrows. The dotted blue line is for initial magnetic helicity $H_i = 10^{-10} H_{\text{max}}$ starting at the electroweak scale, motivated by certain baryogenesis scenarios discussed in Sect. 4.7 below. Since helicity is conserved, see Eq. (3.272), it follows the non-helical scaling until $B_0^2 l_{c,0}$ has decreased by a factor $H_i/H_{\rm max}$ after which the field is maximally helical and follows the scaling Eq. (4.146). Parts of figure based on Ref. [182].

Initial magnetic field

FIG. 1. Power spectrum of the initial magnetic field at $z \simeq 53$ (left) and $z \approx 0$ (right panel), in comoving units, as a function of the comoving wave number $h^{-1}k$.

Spectra of EGMF paper

The propagation was done using the CRPropa 3 code [51]. Particles are injected by sources with energies between 1 EeV and 1000 EeV, with the following spectrum

$$\frac{dN}{dE} \propto \begin{cases} E^{-\alpha} & \text{if } E_{max} > E\\ E^{-\alpha} \exp\left(1 - \frac{E}{E \max}\right) & \text{if } E_{max} \le E \end{cases}, \quad (1)$$

where $\alpha_{\text{Fe}} = 1$ and $\alpha_{\text{p}} = 2$ are the spectral indices for the injected iron and proton scenarios, respetively. Here E_{max} is the maximal energy. In this work we use $E_{max,\text{p}} = 500$ EeV for protons and $E_{max,\text{Fe}} = 156$ EeV for iron primaries. One should note that these choices are arbitrary.

13/10/16

nucleus	E [EeV]	D [Mpc]	sources	run F	run L	run S	run O
р	10	0-10	uni	$21.4^\circ\pm11.5^\circ$	$31.7^\circ\pm19.6^\circ$	$30.5^\circ\pm16.5^\circ$	$67.6^\circ\pm24.6^\circ$
р	10	0-10	lss	$41.3^\circ\pm16.2^\circ$	$60.0^\circ\pm21.1^\circ$	$42.9^\circ\pm17.4^\circ$	$81.6^\circ\pm21.0^\circ$
р	60	0-5	uni	$1.5^{\circ} \pm 1.1^{\circ}$	$1.7^{\circ} \pm 1.5^{\circ}$	$2.3^{\circ} \pm 1.3^{\circ}$	$4.0^{\circ} \pm 2.8^{\circ}$
р	60	0-5	lss	$4.3^{\circ} \pm 2.0^{\circ}$	$8.8^{\circ} \pm 6.1^{\circ}$	$4.7^{\circ} \pm 2.4^{\circ}$	$27.1^\circ\pm16.0^\circ$
р	60	0-10	uni	$2.5^{\circ} \pm 1.4^{\circ}$	$3.0^{\circ} \pm 3.2^{\circ}$	$3.1^{\circ} \pm 1.6^{\circ}$	$6.9^{\circ} \pm 4.0^{\circ}$
р	60	0-10	lss	$4.9^\circ \pm 2.4^\circ$	$9.8^{\circ} \pm 6.3^{\circ}$	$5.5^{\circ} \pm 2.7^{\circ}$	$27.3^\circ\pm15.6^\circ$
р	60	0-10	uni	$2.5^{\circ} \pm 1.4^{\circ}$	$3.0^{\circ} \pm 3.2^{\circ}$	$3.1^{\circ} \pm 1.6^{\circ}$	$6.9^{\circ} \pm 4.0^{\circ}$
р	60	0-10	lss	$4.9^\circ \pm 2.4^\circ$	$9.8^{\circ} \pm 6.3^{\circ}$	$5.5^{\circ} \pm 2.7^{\circ}$	$27.3^\circ\pm15.6^\circ$
р	60	10 - 20	uni	$5.1^{\circ} \pm 2.3^{\circ}$	$7.4^\circ \pm 3.1^\circ$	$6.4^{\circ} \pm 3.3^{\circ}$	$21.7^\circ\pm13.0^\circ$
р	60	10 - 20	lss	$7.4^\circ \pm 2.8^\circ$	$13.8^\circ\pm7.9^\circ$	$7.2^{\circ} \pm 2.8^{\circ}$	$35.7^\circ \pm 15.3^\circ$
р	60	20 - 30	uni	$6.8^{\circ} \pm 2.2^{\circ}$	$10.8^\circ \pm 4.2^\circ$	$8.5^{\circ} \pm 3.7^{\circ}$	$34.7^\circ\pm16.6^\circ$
р	60	20 - 30	lss	$8.4^{\circ} \pm 3.3^{\circ}$	$15.3^\circ\pm7.0^\circ$	$9.0^{\circ} \pm 3.5^{\circ}$	$44.0^\circ\pm16.8^\circ$
р	100	0-5	uni	$0.9^{\circ} \pm 0.5^{\circ}$	$1.0^{\circ} \pm 1.1^{\circ}$	$1.3^{\circ} \pm 0.8^{\circ}$	$2.1^{\circ} \pm 2.7^{\circ}$
р	100	0-5	lss	$2.3^{\circ} \pm 1.1^{\circ}$	$5.0^{\circ} \pm 3.2^{\circ}$	$2.7^{\circ} \pm 1.4^{\circ}$	$14.7^\circ\pm11.5^\circ$
р	100	0-10	uni	$1.3^{\circ} \pm 0.8^{\circ}$	$1.8^{\circ} \pm 1.5^{\circ}$	$2.0^{\circ} \pm 1.3^{\circ}$	$3.9^{\circ} \pm 4.8^{\circ}$
р	100	0-10	lss	$2.8^{\circ} \pm 1.3^{\circ}$	$5.6^{\circ} \pm 3.4^{\circ}$	$2.9^{\circ} \pm 1.5^{\circ}$	$16.0^\circ\pm10.9^\circ$
р	100	10 - 20	uni	$2.9^{\circ} \pm 1.2^{\circ}$	$4.5^{\circ} \pm 2.0^{\circ}$	$3.8^{\circ} \pm 1.7^{\circ}$	$10.6^\circ\pm7.5^\circ$
р	100	10 - 20	lss	$4.1^\circ \pm 1.7^\circ$	$8.5^{\circ} \pm 4.9^{\circ}$	$4.3^{\circ} \pm 1.8^{\circ}$	$23.9^\circ \pm 12.3^\circ$
р	100	20 - 30	uni	$4.0^\circ \pm 1.4^\circ$	$6.0^{\circ} \pm 3.0^{\circ}$	$5.2^{\circ} \pm 2.1^{\circ}$	$19.3^\circ\pm11.3^\circ$
р	100	20 - 30	lss	$4.8^\circ \pm 1.7^\circ$	$8.9^{\circ} \pm 3.2^{\circ}$	$5.0^{\circ} \pm 1.6^{\circ}$	$26.6^\circ\pm12.4^\circ$
Fe	60	0-5	uni	$44.3^\circ\pm20.9^\circ$	$43.6^\circ\pm20.0^\circ$	$60.9^\circ\pm22.5^\circ$	$64.6^{\circ} \pm 23.1^{\circ}$
Fe	60	0-5	lss	$76.6^\circ\pm23.5^\circ$	$82.0^\circ\pm20.6^\circ$	$70.0^\circ\pm21.8^\circ$	$77.0^\circ\pm19.5^\circ$
Fe	60	0-10	uni	$58.4^\circ\pm22.4^\circ$	$67.3^\circ\pm23.3^\circ$	$73.2^\circ\pm21.7^\circ$	$77.6^\circ\pm22.6^\circ$
Fe	60	0-10	lss	$78.6^\circ\pm22.4^\circ$	$83.0^\circ\pm20.2^\circ$	$78.9^\circ\pm21.5^\circ$	$81.2^\circ\pm19.4^\circ$
Fe	60	20 - 30	uni	$84.4^\circ\pm18.6^\circ$	$87.7^\circ\pm19.5^\circ$	$84.3^\circ\pm19.5^\circ$	$90.2^{\circ} \pm 20.3^{\circ}$
Fe	60	20 - 30	lss	$84.0^\circ\pm19.7^\circ$	$89.7^\circ\pm21.2^\circ$	$90.7^\circ\pm19.6^\circ$	$89.9^\circ\pm19.0^\circ$
Fe	100	0-5	uni	$16.4^\circ\pm9.5^\circ$	$32.0^\circ\pm21.2^\circ$	$45.9^\circ\pm23.5^\circ$	$51.8^\circ \pm 23.7^\circ$
Fe	100	0-5	lss	$56.0^\circ\pm20.6^\circ$	$68.1^\circ\pm21.1^\circ$	$60.9^\circ\pm21.5^\circ$	$75.5^{\circ} \pm 24.1^{\circ}$
Fe	100	0-10	uni	$36.3^\circ\pm19.8^\circ$	$48.2^\circ\pm23.1^\circ$	$54.4^\circ\pm22.9^\circ$	$69.7^\circ\pm24.0^\circ$
Fe	100	0-10	lss	$64.0^\circ\pm20.3^\circ$	$71.2^\circ\pm21.4^\circ$	$64.8^\circ\pm21.6^\circ$	$73.6^\circ\pm22.1^\circ$
Fe	100	20 - 30	uni	$72.5^\circ\pm17.5^\circ$	$84.3^\circ\pm20.0^\circ$	$80.3^\circ\pm23.4^\circ$	$77.4^\circ\pm17.1^\circ$
Fe	100	20 - 30	lss	$92.4^{\circ} \pm 17.7^{\circ}$	$76.5^{\circ} \pm 19.0^{\circ}$	$75.7^{\circ} \pm 16.5^{\circ}$	$78.6^{\circ} \pm 19.3^{\circ}$

Alves Batista et al., in preparation

Full spectrum & composition

SNRs

Full spectrum & composition

SNRs combined

Full spectrum & composition

- 2nd Galactic
 component
- Reacceleration by Galactic wind termination shocks
- Wolf-Rayet star explosions

Full spectrum & composition

- Combined
- SNRs + WR-CRs + 3 different
 extragalactic models

