UHECR-2016 Summary

•••

Alexander Kusenko (UCLA and Kavli IPMU)

Interesting times!

- New data: cosmic rays, neutrinos, γs
- Exciting questions about
 - o Spectrum
 - Composition
 - Sources
 - Anisotropy

As a Chinese proverb says, 宁為太平犬, 莫做亂离人

"It is better to be a dog in peaceful times than to give a conference Summary Talk in interesting times..."

Cosmic ray spectrum: PAO and TA

Both experiment see a cutoff, supposedly, a GZK cutoff.

A discrepancy at ~25 EeV (energy rescaling doesn't help)

Ivanov, Roth, others

Spectral features according to TA

Four features:

- low-energy ankle at $\sim 10^{16.3}$ eV
- 2nd knee at $\sim 10^{17.2}$ eV
- ankle at $\sim 10^{18.7}$ eV
- GZK break at ~10^{19.8}eV

Ivanov

Spectral features according to PAO

$$E_{
m ankle} = 4.8 \pm 0.1 \pm 0.8 \; {
m EeV}$$
 $E_{
m s} = 42.1 \pm 1.7 \pm 7.6 \; {
m EeV}$
 $E_{1/2} = 24.7 \pm 0.1^{+8.2}_{-3.4} \; {
m EeV}$

For comparison,

TA ankle: 5 EeV;

TA suppression: 63 EeV

Roth

Declination dependence according to TA

Declination dependence (3.9σ) In the TA data sample with zenith angle up to 55 degrees.

PAO (Roth): TA/Auger discrepancy shows no significant indication of variation in 4 declination bands

Ivanov

Composition: TA results

"Light composition" (=not iron) is favored

Belz, Hanlon

Composition: Pierre Auger results

Significant change in the composition at 2 EeV.

Composition: Pierre Auger results

Disfavor pure protons

Favor mixed composition with significant fraction of He, and A>4 nuclei (N)

Fits with mixed composition (based on assumptions about the injection spectra) represent the ankle, other features

Auger - TA composition working group: encouraging

For an assumed mixed composition, the two experiments would have given *consistent* results.

Significant progress

Hanlon

Convergence of Pierre Auger and TA results

- General agreement, but differences in spectral features
- Progress in understanding the composition
- Anisotropy features differ between the two experiments

Rivers Rhone and Arve: converging, but still distinctly different

Progress in simulations: before and after the LHC

Progress in simulations, but puzzles remain

Inclined showers are very

muon rich.

$$R\mu \equiv rac{N_{\mu}^{
m data}}{N_{\mu}^{
m MC}}$$

A solution may be around the corner. [Pierog]

Encouraging!

Muons invaluable for composition! [Engel]

Anisotropy: large-scale anisotropy according to PAO '15

Auger data set : \approx 70000 events with E>4 EeV and θ < 80°, 85% sky coverage

Modified Raleigh or East-West analysis on 1500 m and 750 m arrays dataset

Auger/TA : \approx 17000 Auger events , \approx 2500 TA events with E>10 EeV , Full sky coverage Spherical harmonic analysis

AUGER/TA

Dipole Amplitude: $6.5 \pm 1.9\%$ (p=5x10⁻³)

Pointing to (a, d) = (93°±24°, -46°±18°)

Lhenry-Yvon, TeVPA 2015

Auger: a dipole anisotropy (significance: >4 σ)

Large-scale anisotropy: dipole

E > 8 EeV (P(≥r^α) = 6.4 x 10⁻⁵ (4σ))

- Total amplitude *d* = 7.3 % ± 1.5%
- Location $(\alpha, \delta) = (95 \pm 13, -39 \pm 13)^{\circ}$

TA hot spot (7 years data)

Chance probability to exceed 5.1σ in the exposure: 3.4σ (0.037 %) post-trial Tinyakov

TA hotspot: a single source?

Energy log10(E/eV)

Blue: Events with > 75EeV (High Rigidity).

Red: Events with < 75EeV (Low Rigidity). Circles represent the mean Positions of the events. Consistent with magnetic deflections from a single source in the Supergalactic plane.

He

The highest energy point suggestive of a nearby source. M82?

Applied UHECR physics: probing the magnetic fields

Ryu, Tinyakov, van Vliet

Sources: the unknowns

- What are they?
 - \circ AGN, GRB, pulsars, etc. are among the candidates. Blazars (AGN) appear to accelerate protons to at least 10^{17-18} eV as evident from gamma ray observations [Essey et al.]
 - Steady or transient? [Fang,Kotera]
 - o Possibly, different classes contribute at the same time
- Where are the sources?

A transition from galactic to extragalactic is expected at "high energy", but

- The transition may be and should be composition dependent
- Transient sources of nuclei in our own galaxy can complicate matters

Different philosophies: with emphasis on simplicity, or with emphasis on description of all the data.

Modeling composition, galactic-extragalactic transition

Modeling composition, galactic-extragalactic transition

Parizot: GRB (or other sources). Composition based on low-energy. Fits the spectrum and composition.

Is it natural?

Yes, if it is part of Nature

Multimesenger signals

- IceCube begins to constrain models of cosmogenic neutrinos
- Gamma rays provide evidence of UHECR acceleration in AGNs
- Links between IceCube PeV neutrinos and UHECR?

IceCube constraints on cosmogenic neutrinos

Ishihara

For proton UHECR, amount of fluxes in 60PeV-10EeV region can be expressed as a function of \mathbf{m} and \mathbf{z}_{max}

evolution function of UHECR source is parameterized as $\psi(z)=(1+z)^m$ for $z \le z_{max}$

Assumptions

- only CMB is target field (small IR/O contribution in the current energy range)
- the photo-pion production is single pion from Δ -resonance only
- → Underestimates flux below 100 PeV

SFR: Hopkins and Beacom 2006 FRII-A: Inoue and Totani 2009

FRII-B: Ajello et al 2012

UHECR sources evolve more slowly than SFR

IceCube cosmogenic model constraints [Ishihara]

- Expect 4-5 events from SFR models
- UHECR sources evolve more slowly than SFR

models to describe the origin of observed diffuse gamma-ray as cosmogenic, measured UHECRs

	model	Event rate in 2426-d	p-value
	Kotera et al SFR	3.6	22.3
	Kotera et al FRII	14.7	<0.1%
	Aloisio et al SFR	4.8	7.8%
	Aloisio et al FRII	24.7	<0.1%
	Ahlers 3EeV m=4.1 z _{max} =2	4.4	2.2%
	Ahlers 10EeV m=4.6 z _{max} =2	5.3	0.7%

First evidence that AGN emit UHECR (E≥ 10¹⁷⁻¹⁸ eV or higher)

Gamma-ray data provide evidence that AGN are accelerated in AGN.

Blazar spectra demand a cosmic ray contribution. [AK]

 $\delta\Gamma = \Gamma_{
m GeV} - \Gamma_{
m TeV}$

The future

- Auger Upgrade
- TA x 4
- TALE
- TAIGA
- IceCube Gen-2
- JEM-EUSO
- TUS
- ARA
- ARIANNA

- Understanding the spectrum and composition
- Charged particle astronomy
- Neutrino astronomy

Let us thank Sagawa sensei and all the organizers!

Local Organization Committee:

Y. Kawasaki

K. Kawata

S. Nagataki

T. Nonaka

S. Ogio(Secretary)

H. Sagawa (Chair)

T. Sako

M. Takeda

Y. Tsunesada

S. Udo

T. Yamamoto

International Advisory Committee:

S.W. Barwick

V.S. Berezinsky

P. Blasi

T. Ebisuzaki

R. Engel

P.L. Ghia

F.L. Halzen

Y. Itow

K.-H.Kampert (Chair)

P. Lipar

K. Makishima

S. Ogio

A.V. Olinto

M.I. Panasyuk

I.H. Park

P. Picozza

P. Privitera

D. Ryu

H. Sagawa

P. Sokolsky

R. Yamazaki

