Flavour anomalies & Belle II's impact on the physics landscape

Particle Physics Seminar, University of Zurich

Florian U. Bernlochner

florian.bernlochner@cern.ch University of Bonn, Germany

About me

- Born and grown up in Bern, CH
- Studied at ETH Zurich (theoretical) physics from 2002-2007
- PhD at Humboldt University in Berlin, Germany working at BaBar
 - 2007-2008 research stay at SLAC, California
 - Finished mid 2011
- Postdoc at University of Victoria, Canada, working on ATLAS
 - 2011-2014 based at CERN
- Junior faculty at University of Bonn, working on Belle (II)
 - Since mid 2014

Jochen Dingfelder

Florian Bernlochner

BSc student

 $\underset{B \to X \, \ell \, \bar{\nu}_{\ell}}{\mathsf{Max}} \, \underset{R \to X \, \ell \, \bar{\nu}_{\ell}}{\mathsf{Nav}}$

PhD students

Jan Hasenbusch $B \to X_{c,u} \tau \, \bar{\nu}_{\tau}$

Luis Pesantez $B \rightarrow X_{s,d} \gamma$

Stephan Duell $B \rightarrow \pi \tau \bar{\nu}_{\tau}$ Belle II tracking

Saskia Mönig $B \to D^* \ell \, \bar{\nu}_\ell$

Mario Arndt $B \rightarrow D^{(*)} \pi \tau \bar{\nu}_{\tau}$

Tarek El Rabbat $B_s \to K \ell \bar{\nu}_\ell$

MSc students

Christian Wessel Belle II PXD / Datcon

+ Hardware (1 Postdoc + 4 PhDs + ...)

Talk Overview

University of Zurich, 2016, May 9

concept and current status

B-Factory Family Album

ARGUS

CLEO

Belle

LHCb

University of Zurich, 2016, May 9

University of Zurich, 2016, May 9

e^+e^- machines are beautiful

University of Zurich, 2016, May 9

Flavour anomalies & Belle II's impact on the physics landscape

8

B-Factory Family Album

proton-atom collisions

LHCb

proton-proton collisions

Note:

 Also proton-antiproton collision experiments and results from ATLAS & CMS

CDF

The CKM Mechanism

The CKM Mechanism source of Charge Parity Violation in SM

 Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

Weak Eigenstates CKM Matrix Mass Eigenstates

- Fully parametrized by four parameters if unitarity holds: three real parameters and one complex phase that if non-zero results in CPV
- Unitarity can be visualized using triangle equations, e.g.

$$V_{CKM}V_{CKM}^{\dagger} = \mathbf{1} \qquad \rightarrow \qquad V_{ub}^*V_{ud} + V_{cb}^*V_{cd} + V_{tb}^*V_{td} = 0$$

CKM Picture over the years: from discovery to precision

Existence of *CPV* phase established in 2001 by BaBar & Belle

- Picture still holds 15 years later, constrained with remarkable precision
- But: still leaves room for new physics contributions

University of Zurich, 2016, May 9

Recap of the last decade of BaBar & Belle: a rich harvest

Year

Belle II Detector concept and current status

University of Zurich, 2016, May 9

Flavour Anomalies: IV_{ub}I & IV_{cb}I

- Sizeable tension in *exclusive* and *inclusive* IV_{ub}I & IV_{cb}I
 - Both methods considered theoretical and experimental mature
 - Individual determinations leave a consistent picture

• About 2.3 σ and 3.4 σ disagreement between incl. and excl. for $|V_{cb}| \& |V_{ub}|$, respectively

Predominantly measured using

 $B \to \pi \,\ell \, \bar{\nu}_\ell$

- Tagged and untagged measurements
 - Tagged = fully reconstruct second B meson in decay with hadronic modes
- Some tension between the measurements:
 - P-Value of combined 4 par fit: 2%
 - Fit takes into account correlated uncertainties, but does not allow for systematic pulls.

Table XVI. Results of the combined fattice $+$ experiment its with $N_z = 4$,.								
Fit	$\chi^2/{ m dof}$	dof	p value	b_0^+	b_1^+	b_{2}^{+}	b_3^+	$ V_{ub} (\times 10^3)$
Lattice+exp.(all)	1.4	54	0.02	0.419(13)	-0.495(55)	-0.43(14)	0.22(31)	3.72(16)
Lattice+BaBar11 [7]	1.1	9	0.38	0.414(14)	-0.488(73)	-0.24(22)	1.33(44)	3.36(21)
Lattice+BaBar12 [8]	1.1	15	0.34	0.415(14)	-0.551(72)	-0.45(18)	0.27(41)	3.97(22)
Lattice+Belle11 [9]	0.9	16	0.55	0.412(13)	-0.574(65)	-0.40(16)	0.38(36)	4.03(21)
Lattice+Belle13 [10]	1.0	23	0.42	0.406(14)	-0.623(73)	-0.13(22)	0.92(45)	3.81(25)

Table XVI. Results of the combined lattice+experiment fits with $N_z = 4$;

University of Zurich, 2016, May 9

FB, Stephan Duell, Jochen Dingfelder, in preparation

New average of experimental input, that allows for systematics to pull on central values:

 $\mathcal{L} = \left[\begin{array}{c} \mathcal{L}_i \end{array} \right] \left[\begin{array}{c} \mathcal{P}_j \end{array} \right]$

 $j \in NP$

 $i \in \text{meas}$

- Results in one averaged spectrum + correlations that can be analyzed separately
- Pulls on systematic errors are propagated through to the central values of the measured distributions

Result of BCL + Fermilab/MILC + Bharucha fit:

 $|V_{ub}| \times 10^{-3} = 3.67 \pm 0.13$ $\chi^2/\text{ndf} = 21.9/22 \quad P = 0.47$

- Used only large q² range for lattice input
 - Some tension in shape between data and lattice
 - High q² region sensitive to modelling of other SL b → u transitions
 - Will need substantially larger data set to improve understanding there.

University of Zurich, 2016, May 9

Right-handed currents & IV_{ub}I

Fit	$ V_{ub}^L \times 10^4$	ϵ_R	χ^2 / ndf	Prob.
3 modes	4.07 ± 0.18	-0.17 ± 0.06	2.5/1	0.11
4 modes	4.00 ± 0.17	-0.15 ± 0.06	4.5/2	0.11

FB, Zoltan Ligeti, Sascha Turczyk, Phys. Rev. D 90, 094003 (2014)

Right-handed currents & IV_{ub}I

Fit	$ V_{ub}^L \times 10^4$	ϵ_R	χ^2 / ndf	Prob.
3 modes	4.07 ± 0.18	-0.17 ± 0.06	2.5/1	0.11
4 modes	4.00 ± 0.17	-0.15 ± 0.06	4.5/2	0.11

 ϵ_R

FB, Zoltan Ligeti, Sascha Turczyk, Phys. Rev. D 90, 094003 (2014)

University of Zurich, 2016, May 9

Right-handed currents & IV_{ub}I

FB, Zoltan Ligeti, Sascha Turczyk, Phys. Rev. D 90, 094003 (2014)

IV_{ub}I from baryonic decays and more on RH currents

University of Zurich, 2016, May 9

University of Zurich, 2016, May 9

Flavour anomalies & Belle II's impact on the physics landscape

́ΡV

SIMBA idea: measure the non-perturbative details simultaneously with IV_{ub}I

coefficients contain non-perturbative physics

FB, Heiko Lacker, Zoltan Ligeti, Ian Stewart, Kerstin Tackmann, Frank Tackmann, in preparation

University of Zurich, 2016, May 9

SIMBA idea: measure the non-perturbative details simultaneously with IV_{ub}I

FB, Heiko Lacker, Zoltan Ligeti, Ian Stewart, Kerstin Tackmann, Frank Tackmann, in preparation

University of Zurich, 2016, May 9

SIMBA idea: measure the non-perturbative details simultaneously with IVubl

FB, Heiko Lacker, Zoltan Ligeti, Ian Stewart, Kerstin Tackmann, Frank Tackmann, in preparation

University of Zurich, 2016, May 9

To carry this out to its full potential: need differential measurements

- Differential branching fractions of inclusive SL b \rightarrow u and b \rightarrow c decays
 - For SL b \rightarrow u very difficult, but not impossible with B-Factory data
 - For SL b \rightarrow c: was never a priority to measure
- Auxiliary input: Differential measurements of inclusive b \rightarrow s γ

$$\frac{\mathrm{d}\Gamma(\bar{B}\to X_s\,\gamma)}{\mathrm{d}E_{\gamma}} = 2\,H_s\int\mathrm{d}k\,\hat{P}_s(k)\,\hat{F}(k)\,,\qquad \frac{\mathrm{d}\Gamma(\bar{B}\to X_u\,\ell\,\bar{\nu}_\ell)}{\mathrm{d}E_\ell\,\mathrm{d}p_X^+\,\mathrm{d}p_X^-} = H_u\int\mathrm{d}k\,\hat{P}_u(k)\,\hat{F}(k)\,.$$

University of Zurich, 2016, May 9

To carry this out to its full potential: need differential measurements

- Differential branching fractions of inclusive SL b \rightarrow u and b \rightarrow c decays
 - For SL b \rightarrow u very difficult, but not impossible with B-Factory data
 - For SL b \rightarrow c: was never a priority to measure
- Auxiliary input: Differential measurements of inclusive $b \rightarrow s \gamma$

University of Zurich, 2016, May 9

Important auxiliary input:

Currently repeating untagged inclusive $b \rightarrow s \gamma$ measurement:

- Reconstruct high energetic photon
- Veto events with continuum or B-background signature (multivariate)
 - At low photon energies: mostly background from other Bdecays
 - Reliable measurements possible down to rabout BLNG 2BGneV
 - Theory prediction at NNLO from $M_{SCA}^{SVS} B_{CNP}^{LNP6}$ in B-meson rest frame with E $\chi > 1.6$ GeV cut ^{1.6}
 - For higher cuts the branching fraction depends on the details of the b-quark PDF / shape function

Result aims to be out for

- Working on last details of unfolding
 - 'Unfolding' = reverting resolutions induced migrations 2.4 2.6

Unfolded toys in True E_{γ}^{CM}

2.8

Flavour Anomalies: R(D) & R(D*)

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \,\bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)} \,\ell \,\bar{\nu}_{\ell})}$$

Another anomaly in the flavour sector is between that ratic of semitauonic and light lepton branching fractions

- Sensitive to for instance to contributions from a charged Higgs Boson
- In the prediction of this ratio, many of the theory uncertainties cancel
- Excess seen by BaBar, Belle and also LHCb

 Deviations not compatible with type II 2HDM, could be accommodated by type III like scenarios

University of Zurich, 2016, May 9

Flavour anomalies & Belle II's im

R(X)

universität**bonn** Jan Hasenbusch, FB

University of Zurich, 2016, May 9
R(X)

Peak für Zerfälle ohne oder mit einem Neutrino!

R(X)

Peak für Zerfälle ohne oder mit einem Neutrino!

University of Zurich, 2016, May 9

University of Zurich, 2016, May 9

R(D**)

Most analyses model D** backgrounds using LLSW PRL 78 (1997) 3995, Phys.Rev.D57:308-330,1998

- Currently working with Zoltan Ligeti on updating this
 - Some of the underlying assumptions changed; we know a tad more
 - Use LLSW expansion and fit slope and normalization of leading form factors

R(D**)

Reduces error on modelling

- 'Postdiction', as using measured differential and total branching fractions
- But: coherent prediction of the dynamics of the decays. Form factors and observed branching fractions do not decouple
- Can be used to predict R(D**)

Important for signal modelling in R(X) measurements.

• Plan to measure R(D**) using Belle data and hadronic tagging, today Mario Arndt started working on this.

University of Zurich, 2016, May 9

concept and current status

Transformation of a *B*-Factory into a Super *B*-Factory

To further push the intensity frontier need substantial instantaneous luminosity increase KEK to SuperKEKB: $2.1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \text{ to } 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ Key: **nano-beam scheme** — squeeze the beam to very small vertical spot size of ~50 nm

LER / HER	KEKB	SuperKEKB
Energy [GeV]	3.5 / 8	4.0 / 7.0
β _y * [mm]	5.9 / 5.9	0.27 / 0.30
β _x * [mm]	1200	32 / 25
<i>I±</i> [A]	1.64 / 1.19	3.6 / 2.6
ζ±y	0.129 / 0.09	0.09 / 0.09
ε [nm]	18 / 24	3.2 / 4.6
# of bunches	1584	2500
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.1	80

Needs major upgrade of KEKB accelerator

University of Zurich, 2016, May 9

Transformation of a *B*-Factory into a Super *B*-Factory

New superconducting final

Redesign the lattices of HER & LER to squeeze the emittance. Replace short dipoles with longer ones (LER)

Replaced old beam pipes with TiN coated beam pipes with antechambers

Low emittance positrons to inject Damping ring Low emittance gun

> Low emittance electrons to inject

Reinforced RF (radio frequency) system for higher beam currents, improved monitoring & control system

Upgrade positron capture section

University of Zurich, 2016, May 9

Transformation of a *B*-Factory into a Super *B*-Factory

University of Zurich, 2016, May 9

The Belle II Detector

To cope with higher luminosity: **need new detector** Design concept similar to Belle and BaBar

Needs to cope with 20 times larger beam backgrounds, many technological challenges

University of Zurich, 2016, May 9

The Belle II Detector

To cope with higher luminosity: **need new detector** Design concept similar to Belle and BaBar

University of Zurich, 2016, May 9

Belle II / SuperKEKB Luminosity projections

Belle II / SuperKEKB Luminosity projections

Belle II / SuperKEKB Luminosity projections

concept and current status

Super B-Factory measurement candy bowl

Semileptonic Precision measurements of CKM matrix elements priority

Exclusive measurements profit from large Belle II data samples

- U Secondo Seco
- Established measurement method: *fully hadronic reconstruction of second Bmeson*
- Very low efficiency due to low hadronic Branching Fractions (of the order 0.2-0.3%)

Neutrino of signal decay the only missing particle!

had. tagged $B \to D^* \ell \, \bar{\nu}_\ell$

Error on IV _{cb} I	stat.	tot.
B-Factories	0.6%	3.6%
Belle II 5/ab	0.2%	1.8%
Belle II 50/ab	0.1%	1.4%

had. tagged $B \to \pi \, \ell \, \bar{\nu}_\ell$

Error on IV _{ub} I	stat.	tot.
B-Factories	5.8%	10.8%
Belle II 5/ab	2.2%	4.7%
Belle II 50/ab	0.7%	2.4%

untagged $B \to \pi \, \ell \, \bar{\nu}_\ell$

Error on IV _{ub} l	stat.	tot.
B-Factories	2.7%	9.4%
Belle II 5/ab	1.0%	4.2%
Belle II 50/ab	0.3%	2.2%

Semileptonic Precision measurements of CKM matrix elements a priority Improvements on *inclusive measurements* less clear.

- IV_{cb}I systematically and theory limited; need new approaches and ideas
- IV_{ub}I will gain; but need to improve on understanding of background and methodology

Neutrino of signal decay the only missing particle!

$$B \to X_c \ell \, \bar{\nu}_\ell$$

Error on IV _{cb} I	stat.	tot.
B-Factories	1.5%	1.8%
Belle II 50/ab	0.5%	1.2%

$$B \to X_u \,\ell \,\bar{\nu}_\ell$$

Error on IV _{ub} l	stat.	tot.
B-Factories	4.5%	6.5%
Belle II 5/ab	1.1%	3.4%
Belle II 50/ab	0.4%	3%

Semi-Ieptonic

Semi-tauonic decay modes highly sensitive to new physics

Clean measurement is a major Belle II goal

Target:

 $R(X) \quad R(\pi) \quad R(D^{**})$

R(D)

Error	stat.	tot.
B-Factories	13%	16.2%
Belle II 5/ab	3.8%	5.6%
Belle II 50/ab	1.2%	3.4%

 $R(D^*)$

Error	stat.	tot.
B-Factories	7.1%	9.0%
Belle II 5/ab	2.1%	3.2%
Belle II 50/ab	0.7%	2.1%

Super B-Factory measurement candy bowl after LHCb had a treat

Belle II & LHCb: On complementarity and overlap

Rivalry and competition — a good thing:

- *B*-factories profited from scrutiny of other team
- In past schedules lined up with LHCb and Belle II things lie differently
 - LHCb: running and very successful
 - Belle II: first collisions 2017, first Y(4S) physics 2018
- Provocative question: 'Will there be anything interesting left to measure?'
 - Clear overlaps between physics programs, but also unique strengths
 - Large Baryonic samples and decays into visible particles: LHCb's strength
 - Missing particles, inclusive measurements, low multiplicity final states: Belle II's forte
 - Some channels will be head-and-neck run — great!

Nature Physics 10 (2015) 1038

concept and current status

Summary

Brief overview about the Bonn Belle (II) physics activities I hope you also got a tad excited about Belle II

- Increasingly interesting physics at the intensity frontier with LHCb upgrade & Belle II
- Both experiments have competing topics, but also unique focal points & strengths

Era of the Super B-Factories will keep things interesting

• Significant sensitivity gain on many precision observables — will the SM remain?

Backup

A closer look on the exclusive IV_{cb}I side

Differential branching fractions:

 $\frac{\mathrm{d}^{4}\Gamma(B\to D^{*}\ell\nu)}{\mathrm{d}w\mathrm{d}\cos\theta_{\nu}\mathrm{d}\cos\theta_{\ell}\mathrm{d}\chi}\left(|V_{cb}|,\rho_{D^{*}},R_{1},R_{2}\right)\to\mathrm{use}\ \mathrm{1D-projections}$

 \rightarrow measurement of $|V_{cb}|$ and $B \rightarrow D^* I \nu$ form factor paramters

 \rightarrow search for deviations (in shape) from SM \rightarrow new Physics?

 \rightarrow unfolding of the spectra

University of Zurich, 2016, May 9

A closer look on the exclusive IV_{cb}I side

▲□▶▲@▶▲≧▶▲≧▶ ≧ 釣�♡ 4/14

University of Zurich, 2016, May 9

Flavour anomalies & Belle II's impact on the physics landscape

65

Search for new sources of $\ensuremath{\mathsf{CPV}}$

CKM fit dominated by $sin(2\beta =$

 $2\phi_1$) precision

If new sources of CPV is present expect tree-constraints and loop constraints to not agree

Current precision leaves room for new CPV physics

інср

CP\

Precision measurements of $sin(2\beta)$ will remain an important topic to check the consistency of the Unitary triangle and for the search of new physics

Error on $sin(2\beta)$	stat.	tot.
B-Factories	3.5%	3.9%
Belle II 5/ab	1.3%	1.8%
Belle II 50/ab	0.4%	1.2%

66

One of the most promising ways to search for new sources of CPV is to compare the mixing-induced CP asymmetries in penguin transitions with tree-dominated modes

$B \to \eta' K^0$	Error on $sin(2\beta)$	tot.
	B-Factories	9.4%
	Belle II 5/ab	4.2%
	Belle II 50/ab	1.6%
$B \to \phi K^0$	Error on $sin(2\beta)$	tot.
	B-Factories	17.8%
	Belle II 5/ab	7.9%
	Belle II 50/ab	2.7%
$B \to K^0 K^0 K^0$	Error on $sin(2\beta)$	tot.
	B-Factories	33.9%
	Belle II 5/ab	15.1%
	Belle II 50/ab	4.9%

	sin(2)	B ^{eff})≡	≡ sin(2́	2φ ₁	eff) HFAG Moriond 2014 PRELIMINARY
b→ccs	World Average				0.68 ± 0.02
Ŷ	BaBar			-	$0.66 \pm 0.17 \pm 0.07$
-	Belle				0.90 +0.09
Ŷ	BaBar				$0.57 \pm 0.08 \pm 0.02$
° ج	Belle		-	-	$0.68 \pm 0.07 \pm 0.03$
×.	BaBar				→ 0.94 ^{+0.21} ± 0.06
×.	Belle				$0.30 \pm 0.32 \pm 0.08$
° ×	BaBar			-	$0.55 \pm 0.20 \pm 0.03$
3 ⁰	Belle				$0.67 \pm 0.31 \pm 0.08$
Ý	BaBar		—	0.3	5 +0.26 ± 0.06 ± 0.03
ے د	Belle			-0.6	4 +0.19 ± 0.09 ± 0.10
ې	BaBar			-	0.55 ^{+0.26} _{-0.29} ± 0.02
8	Belle		-	-	0.91 ± 0.32 ± 0.05
్రం	BaBar		-	••	0.74 +0.12
÷	Belle		→	-	0.63 +0.16
f _a Ka	BaBar			0.48	± 0.52 ± 0.06 ± 0.10
Í, K	BaBar		•	0.20	± 0.52 ± 0.07 ± 0.07
π [°] π [°] K _e	BaBar +				-0.72 ± 0.71 ± 0.08
¢π⁰K∝ຶ	BaBar		-		0.97 +0.03
π⁺π "Κ_Ν	N®aBar		<u> </u>	0.01	$\pm 0.31 \pm 0.05 \pm 0.09$
Ŷ	BaBar		-	-	$0.65 \pm 0.12 \pm 0.03$
¥	Belle		-	•	0.76 +0.14
b→qqš	Naïve average				0.66 ± 0.03
-2	-1	()		1 2

Charged lepton flavour violation: SM-free signals!

 $\mu^{-} \qquad \tilde{\chi}^{0} \qquad e^{-}$

LFV signals are expected in many BSM scenarios, such as the MSSM or as a consequence of Seesaw models

Charged lepton flavour violation: SM-free signals!

LFV signals are expected in many BSM scenarios, such as the MSSM or as a consequence of Seesaw models

Belle II will be able to improve current limits by a factor of 100 for $\tau \rightarrow 3I$ and a factor of >10 for $\tau \rightarrow I\gamma$

EWP

Electroweak penguin production very sensitive to New Physics

- Radiative penguins offer interesting probe for $|C_7|$
 - A_{CP} measurements of $B \rightarrow X_{d/s} y$ and $B \rightarrow X_{d+s} y$
- Leptonic penguins access $|C_7|$, $|C_9|$ and $|C_{10}|$
 - Can measure full repertoire of kinematic, angular and CP observables
- Belle II can access inclusive and exclusive decays
 - Way to deal with QCD independent; valuable cross check when anomalies show up (cf. slide 19)
 - Measured $B \rightarrow X_s \parallel A_{FB}$ sensitive to $|C_7|$, $|C_9|$ ratio

B	$\rightarrow X_s \gamma$	
	0	

Error	stat.	tot.
B-Factories	4.2%	12.3%
Belle II 5/ab	1.5%	6.6%
Belle II 50/ab	0.5%	5.4%

TZ

B	$\rightarrow X$	$_s\gamma$
rror		otat

Error	stat.	tot.
B-Factories	13.4%	16.8%
Belle II 5/ab	4.8%	7.5%
Belle II 50/ab	1.5%	5.1%

$B \to X_s \ell\ell \ C_7$	$_7/C_9$ ratio
----------------------------	----------------

W

Error	tot.
B-Factories	19%
Belle II 5/ab	9%
Belle II 50/ab	6%

Electroweak penguin production very sensitive to New Physics

- Belle II will be able to probe modes with neutrinos and τ leptons
 - $B \rightarrow K(^*) vv$ theoretically very clean, no long distance effects from resonances (J/ ψ , etc.) as for $B \rightarrow K(^*) \parallel$

had. tagged

EWP

$B \to \tau \tau$	SM ~ 2 x 10 ⁻¹⁰
-------------------	----------------------------

Error	90% CL
B-Factories	< 4.1 x 10 ⁻³
Belle II 5/ab	< 0.8 x 10 ⁻³
Belle II 50/ab	< 0.3 x 10 ⁻³

$$B_s
ightarrow au au$$
 SM ~ 9 x 10-7

Error	90% CL
B-Factories	< 13 x 10 ⁻³
Belle II 5/ab	< 2 x 10 ⁻³

had. tagged

$$B^0
ightarrow K_S
u ar
u$$
 SM ~ 2.2 x 10-6

stat.
590%
220%
94%

$$B^+
ightarrow K^+
u ar{
u}$$
 SM ~ 4.7 x 10-6

Error	stat.
B-Factories	130%
Belle II 5/ab	49%
Belle II 50/ab	22%

 $B^0 \to K^{*\,0} \nu \bar{\nu}~$ SM ~ 9.5 x 10-6

W

Error	stat.
B-Factories	112%
Belle II 5/ab	42%
Belle II 50/ab	22%

$$B^+
ightarrow K^{*+}
u ar{
u}$$
 SM ~ 10.2 x 10-6

Error	stat.
B-Factories	120%
Belle II 5/ab	45%
Belle II 50/ab	22%

Charm physics

Charm physics experienced a large boost in interest from the theory side as well from experimental efforts.

Charm will be one of the important subjects to be studied by Belle II

- Leptonic charm decays are sensitive to NP contributions
- Measurement of D⁰ mixing and CPV parameter measurement

$$D^{0} W^{+} V_{ci} V_{uj}^{*} W^{-} \overline{D}^{0}$$

$$\overline{u} \overline{d, \overline{s}, \overline{b}} \overline{c}$$

Charm mixing frequency extremely low, challenging high-statistics measurement

 y_{CP}

 A_{Γ} SM ~ < x 10⁻⁴

Error	tot. (in 10 ⁻³⁾
B-Factories	2.4
Belle II 5/ab	1.1
Belle II 50/ab	0.5

Error	tot. (in 10 ⁻⁴⁾
B-Factories	22
Belle II 5/ab	10
Belle II 50/ab	3
Low multiplicity signatures

Belle II can probe 'dark forces' with dedicated Triggers

 'dark forces': involving dark-matter particles that serve as 'portals' between the SM and a dark-matter sector dark photon mass coupling strength

- $\mathcal{L}_{eff} = \mathcal{L}_{SM} \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} \frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu}$ Motivated by rise in cosmic-ray positron fraction (which does not necessarily have to be due to New Physics)
- Also models with dark Higgs bosons that could be produced in Y(nS) decays.

Belle II will probe a unique piece of phase space, and even a small data sample will have a sizeable impact on todays limits

And there are the untouched pieces...

(Prompt) dilepton final state

Flavour Anomalies: $b \rightarrow s\mu\mu$

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

University of Zurich, 2016, May 9

Flavour anomalies & Belle II's impact on the physics landscape 76

The reconstruction of $B \to K^{(*)}\ell^+\ell^-$ is challenging!

- The branching ratio for $B^0 o K^* (892)^0 \ell^+ \ell^-$ is in the order of 10^{-7}
- There is irreducible background from $B \to K^* J/\psi$ and $B \to K^* \psi(2S)$
- We expect $\mathcal{O}(100)$ candidates in the Belle data-sample

Solution:

- Highly efficient reconstruction algorithms to find as many candidates as possible
 Robust fitting technique suitable for low statistics
 - ightarrow folding method introduced by LHCb in 2013 (arXiv:1308.1707)

Flavour Anomalies: $b \rightarrow s\mu\mu$

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

Multivariate approach

- Neural networks for identifying all primary particles and K*
 - K^* is reconstructed in $K^*(892)^0 \to K^+\pi^-$
- Neural networks for signal selection (one for each B decay channel)
 - Signal is identified in the beam constrained mass

$$M_{
m bc} \equiv \sqrt{E_{
m Beam}^2 - |ec{p}_B|^2}$$

We find: 117.6 \pm 12.4 signal candidates for $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$ 69.4 \pm 12.0 for $B^0 \rightarrow K^*(892)^0 e^+ e^-$

Flavour Anomalies: $b \rightarrow s\mu\mu$

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

University of Zurich, 2016, May 9

B-Factories and LHCb IV_{ub}I Systematics

TABLE VIII: Systematic errors in % for $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu)$ from the four-mode fit for bins in q^2 and the total q^2 range. The total errors are derived from the individual contributions taking into account the complete covariance matrix.

	В	ightarrow	$\pi\ell u$				
q^2 range (GeV ²)	0-4	4-8	8-12	12-16	16-20	>20	0-26.4
Track efficiency	3.4	1.5	2.3	0.1	1.5	2.8	1.9
Photon efficiency	0.1	1.4	1.0	4.6	2.8	0.3	1.8
Lepton identification	3.8	1.6	1.9	1.8	1.9	3.0	1.8
K_L efficiency	1.0	0.1	0.5	4.5	0.4	2.0	1.4
K_L shower energy	0.1	0.1	0.1	0.8	0.9	3.8	0.7
K_L spectrum	1.6	1.9	2.2	3.1	4.4	2.3	2.5
$B \to \pi \ell \nu F F f_+$	0.5	0.5	0.5	0.6	1.0	1.0	0.6
$B \to \rho \ell \nu FFA_1$	1.7	1.2	3.4	2.0	0.1	1.6	1.7
$B \to \rho \ell \nu FFA_2$	1.3	0.8	2.6	1.0	0.1	0.4	1.1
$B \to \rho \ell \nu FFV$	0.2	0.3	0.9	0.7	0.1	0.5	0.5
$\mathcal{B}(B^+ \to \omega \ell^+ \nu)$	0.1	0.1	0.1	0.2	0.3	1.5	0.2
$\mathcal{B}(B^+ \to \eta \ell^+ \nu)$	0.1	0.1	0.2	0.2	0.2	0.5	0.2
$\mathcal{B}(B^+ \to \eta' \ell^+ \nu)$	0.1	0.1	0.1	0.1	0.1	0.3	0.1
$\mathcal{B}(B \to X_u \ell \nu)$	0.2	0.1	0.1	0.1	1.1	1.6	0.4
$B \to X_u \ell \nu$ SF param.	0.4	0.1	0.2	0.2	0.5	4.2	0.7
$B \to D\ell\nu \ \mathrm{FF} \ \rho_D^2$	0.2	0.1	0.5	0.3	0.2	0.7	0.3
$B \to D^* \ell \nu$ FF R_1	0.1	0.4	0.8	0.6	0.3	0.6	0.5
$B \to D^* \ell \nu \ \mathrm{FF} \ R_2$	0.5	0.2	0.1	0.2	0.1	0.4	0.2
$B \to D^* \ell \nu \ \mathrm{FF} \ \rho_{D^*}^2$	0.7	0.2	0.6	0.8	0.4	1.1	0.6
$\mathcal{B}(B \to D\ell\nu)$	0.2	0.2	0.3	0.4	0.5	0.5	0.3
$\mathcal{B}(B \to D^* \ell \nu)$	0.4	0.1	0.3	0.3	0.3	0.7	0.3
$\mathcal{B}(B \to D^{**} \ell \nu)_{\text{narrow}}$	0.4	0.1	0.1	0.3	0.1	0.5	0.2
$\mathcal{B}(B \to D^{**} \ell \nu)_{\mathrm{broad}}$	0.1	0.1	0.1	0.5	0.1	0.2	0.2
Secondary leptons	0.5	0.2	0.3	0.2	0.2	0.7	0.3
Continuum	5.3	1.0	2.6	1.8	3.1	6.1	2.0
Bremsstrahlung	0.3	0.1	0.1	0.1	0.1	0.4	0.2
Radiative corrections	0.5	0.1	0.1	0.2	0.2	0.6	0.3
$N_{B\overline{B}}$	1.2	1.0	1.2	1.2	1.1	1.6	1.2
B lifetimes	0.3	0.3	0.3	0.3	0.3	0.7	0.3
f_{\pm}/f_{00}	1.0	0.4	0.8	0.8	0.5	1.3	0.8
Total syst. error	8.2	3.9	6.7	8.3	6.9	10.6	5.0

Source	Relative uncertainty $(\%)$
$\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)$	$+4.7 \\ -5.3$
Trigger	3.2
Tracking	3.0
Λ_c^+ selection effici	ency 3.0
$\Lambda_b^0 \to N^* \mu^- \overline{\nu}_\mu$ sha	apes 2.3
Λ_b^0 lifetime	1.5
Isolation	1.4
Form factor	1.0
Λ_b^0 kinematics	0.5
q^2 migration	0.4
PID	0.2
Total	$+7.8 \\ -8.2$

B-Factories R(D) / R(D*) Systematics

		Fractional uncertainty $(\%)$					Correlation		
Source of uncertainty	$\mathcal{R}(D^0)$ \mathcal{R}	$\mathcal{R}(D^{*0})$ \mathcal{I}	$R(D^+) \mathcal{R}$	$\mathcal{L}(D^{*+})$	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	D^0/D^{*0} 1	D^{+}/D^{*+}	D/I
Additive uncertainties									
PDFs									
MC statistics	6.5	2.9	5.7	2.7	4.4	2.0	-0.70	-0.34	-0
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	0.3	0.2	0.2	0.1	0.2	0.2	-0.52	-0.13	-0
$D^{**} \to D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5	0.7	0.5	0.7	0.5	0.22	0.40	0
$\mathcal{B}(\overline{B} \to D^{**}\ell^-\overline{\nu}_\ell)$	1.0	0.4	1.0	0.4	0.8	0.3	-0.63	-0.68	-0
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)$	1.2	2.0	2.1	1.6	1.8	1.7	1.00	1.00	1
$D^{**} \to D^{(*)} \pi \pi$	2.1	2.6	2.1	2.6	2.1	2.6	0.22	0.40	0
Cross-feed constraints									
MC statistics	2.6	0.9	2.1	0.9	2.4	1.5	0.02	-0.02	-0
$f_{D^{**}}$	6.2	2.6	5.3	1.8	5.0	2.0	0.22	0.40	C
Feed-up/feed-down	1.9	0.5	1.6	0.2	1.3	0.4	0.29	0.51	(
Isospin constraints	_	_	_	_	1.2	0.3	_	_	-(
Fixed backgrounds									
MC statistics	4.3	2.3	4.3	1.8	3.1	1.5	-0.48	-0.05	—(
Efficiency corrections	4.8	3.0	4.5	2.3	3.9	2.3	-0.53	0.20	_(
Multiplicative uncertainties	5								
MC statistics	2.3	1.4	3.0	2.2	1.8	1.2	0.00	0.00	(
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	1.6	0.4	1.6	0.3	1.6	0.4	0.00	0.00	(
Lepton PID	0.6	0.6	0.6	0.5	0.6	0.6	1.00	1.00	1
π^0/π^{\pm} from $D^* \to D\pi$	0.1	0.1	0.0	0.0	0.1	0.1	1.00	1.00	1
Detection/Reconstruction	0.7	0.7	0.7	0.7	0.7	0.7	1.00	1.00	1
$\mathcal{B}(au^- o \ell^- ar{ u}_\ell u_ au)$	0.2	0.2	0.2	0.2	0.2	0.2	1.00	1.00]
Total syst. uncertainty	12.2	6.7	11.4	6.0	9.6	5.5	-0.21	0.10	(
Total stat. uncertainty	19.2	9.8	18.0	11.0	13.1	7.1	-0.59	-0.23	—(
Total uncertainty	22.7	11.9	21.3	12.5	16.2	9.0	-0.48	-0.15	_(

LHCb R(D*) Systematics

Table 1:	Systematic	uncertainties	in the	e extraction	of $\mathcal{R}(D^*$).

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**} \tau^- \overline{\nu}_\tau) / \mathcal{B}(\overline{B} \to D^{**} \mu^- \overline{\nu}_\mu)$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
$\mathcal{B}(\tau^- o \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

LHCb and Belle $sin(2\beta = 2 \phi_1)$

Vertexing $S_f \pm 0.008 \pm 0.031 \pm 0.025 \pm 0.011 \pm 0.007$ $A_f \pm 0.022 \pm 0.026 \pm 0.021 \pm 0.015 \pm 0.007$ Δt $S_f \pm 0.007 \pm 0.007 \pm 0.005 \pm 0.007 \pm 0.007$ resolution $A_f \pm 0.004 \pm 0.003 \pm 0.004 \pm 0.003 \pm 0.001$ Tag-side $S_f \pm 0.002 \pm 0.002 \pm 0.002 \pm 0.001 \pm 0.001$ interference $A_f \pm 0.003 \pm 0.003 \pm 0.004 \pm 0.003 \pm 0.004$ Flavor $S_f \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003$ Flavor $S_f \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003$ Possible $S_f \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004$ ft bias $A_f \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005$ Signal $S_f \pm 0.004 \pm 0.004 \pm 0.001 \pm 0.006 \pm 0.002$ Background $S_f < 0.001 \pm 0.001 \pm 0.002 \pm 0.001 \pm 0.001 \pm 0.001$			$J/\psi K_S^0$	$\psi(2S)K_S^0$	$\chi_{c1}K_S^0$	$J/\psi K_L^0$	All
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vertexing	\mathcal{S}_{f}	± 0.008	± 0.031	± 0.025	± 0.011	± 0.007
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\mathcal{A}_{f}	± 0.022	± 0.026	± 0.021	± 0.015	± 0.007
resolution $\mathcal{A}_f \pm 0.004 \pm 0.003 \pm 0.004 \pm 0.003 \pm 0.001$ Tag-side $\mathcal{S}_f \pm 0.002 \pm 0.002 \pm 0.002 \pm 0.001 \pm 0.001$ interference $\mathcal{A}_f \begin{array}{c} +0.038 \\ -0.000 \end{array} \begin{array}{c} +0.003 \\ -0.000 \end{array} \begin{array}{c} \pm 0.003 \end{array}$ Flavor $\mathcal{S}_f \pm 0.003 \pm 0.003 \pm 0.004 \pm 0.003 \pm 0.004$ tagging $\mathcal{A}_f \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003$ Possible $\mathcal{S}_f \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004$ fit bias $\mathcal{A}_f \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005$ Signal $\mathcal{S}_f \pm 0.004 \pm 0.004 \pm 0.006 < 0.001 \pm 0.006 \pm 0.002$ Background $\mathcal{S}_f < 0.001 \pm 0.001 = 0.001 < 0.001$ $\Lambda_t \text{ PDFs}$ $\mathcal{A}_f < 0.001 < 0.001 < 0.001 < 0.001 < 0.001$	Δt	\mathcal{S}_{f}	± 0.007	± 0.007	± 0.005	± 0.007	± 0.007
Tag-side $S_f \pm 0.002 \pm 0.002 \pm 0.002 \pm 0.001 \pm 0.001$ interference $A_f \stackrel{+0.038}{-0.000} \stackrel{+0.038}{-0.000} \stackrel{+0.038}{-0.000} \stackrel{+0.038}{-0.000} \stackrel{+0.000}{-0.037} \pm 0.008$ Flavor $S_f \pm 0.003 \pm 0.003 \pm 0.004 \pm 0.003 \pm 0.003$ tagging $A_f \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003$ Possible $S_f \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004$ fit bias $A_f \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005$ Signal $S_f \pm 0.004 \pm 0.016 < 0.001 \pm 0.016 \pm 0.004$ fraction $A_f \pm 0.002 \pm 0.006 < 0.001 \pm 0.006 \pm 0.002$ Background $S_f < 0.001 \pm 0.001 < 0.001 < 0.001 < 0.001 < 0.001$	resolution	\mathcal{A}_{f}	± 0.004	± 0.003	± 0.004	± 0.003	± 0.001
interference \mathcal{A}_{f} $^{+0.038}_{-0.000}$ $^{+0.038}_{-0.000}$ $^{+0.038}_{-0.000}$ $^{+0.038}_{-0.037}$ $^{+0.000}_{-0.037}$ ± 0.008 Flavor \mathcal{S}_{f} ± 0.003 ± 0.003 ± 0.004 ± 0.003 ± 0.004 ± 0.004 tagging \mathcal{A}_{f} ± 0.003 ± 0.003 ± 0.003 ± 0.003 ± 0.003 Possible \mathcal{S}_{f} ± 0.004 ± 0.004 ± 0.004 ± 0.004 ± 0.004 fit bias \mathcal{A}_{f} ± 0.005 ± 0.005 ± 0.005 ± 0.005 Signal \mathcal{S}_{f} ± 0.004 ± 0.016 < 0.001 ± 0.006 fraction \mathcal{A}_{f} ± 0.002 ± 0.006 < 0.001 ± 0.002 Background \mathcal{S}_{f} < 0.001 ± 0.002 ± 0.030 ± 0.002 ± 0.001	Tag-side	\mathcal{S}_{f}	± 0.002	± 0.002	± 0.002	± 0.001	± 0.001
Flavor $S_f \pm 0.003 \pm 0.003 \pm 0.004 \pm 0.003 \pm 0.004$ tagging $A_f \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003$ Possible $S_f \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004$ fit bias $A_f \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005$ Signal $S_f \pm 0.004 \pm 0.016 < 0.001 \pm 0.016 \pm 0.004$ fraction $A_f \pm 0.002 \pm 0.006 < 0.001 \pm 0.006 \pm 0.002$ Background $S_f < 0.001 \pm 0.002 \pm 0.001 = 0.001 \pm 0.001 < 0.001$	interference	\mathcal{A}_{f}	$^{+0.038}_{-0.000}$	$+0.038 \\ -0.000$	$^{+0.038}_{-0.000}$	$^{+0.000}_{-0.037}$	± 0.008
tagging $\mathcal{A}_f \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.003$ Possible $\mathcal{S}_f \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004$ fit bias $\mathcal{A}_f \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005$ Signal $\mathcal{S}_f \pm 0.004 \pm 0.016 < 0.001 \pm 0.016 \pm 0.004$ fraction $\mathcal{A}_f \pm 0.002 \pm 0.006 < 0.001 \pm 0.006 \pm 0.002$ Background $\mathcal{S}_f < 0.001 \pm 0.002 \pm 0.001 = 0.001 \pm 0.001 < 0.001$	Flavor	\mathcal{S}_{f}	± 0.003	± 0.003	± 0.004	± 0.003	± 0.004
Possible $S_f \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004 \pm 0.004$ fit bias $A_f \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005$ Signal $S_f \pm 0.004 \pm 0.016 < 0.001 \pm 0.016 \pm 0.004$ fraction $A_f \pm 0.002 \pm 0.006 < 0.001 \pm 0.006 \pm 0.002$ Background $S_f < 0.001 \pm 0.002 \pm 0.000 \pm 0.002 \pm 0.001$ Δt PDFs $A_f < 0.001 < 0.001 < 0.001 \pm 0.014 < 0.001 < 0.001$	tagging	\mathcal{A}_{f}	± 0.003	± 0.003	± 0.003	± 0.003	± 0.003
fit bias $\mathcal{A}_f \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005 \pm 0.005$ Signal $\mathcal{S}_f \pm 0.004 \pm 0.016 < 0.001 \pm 0.016 \pm 0.004$ fraction $\mathcal{A}_f \pm 0.002 \pm 0.006 < 0.001 \pm 0.006 \pm 0.002$ Background $\mathcal{S}_f < 0.001 \pm 0.002 \pm 0.000 \pm 0.002 \pm 0.001$ Δt PDFs $\mathcal{A}_f < 0.001 < 0.001 = 0.001 + 0.014 < 0.001 < 0.001$	Possible	\mathcal{S}_{f}	± 0.004	± 0.004	± 0.004	± 0.004	± 0.004
Signal $S_f \pm 0.004 \pm 0.016 < 0.001 \pm 0.016 \pm 0.004$ fraction $A_f \pm 0.002 \pm 0.006 < 0.001 \pm 0.006 \pm 0.002$ Background $S_f < 0.001 \pm 0.002 \pm 0.030 \pm 0.002 \pm 0.001$ $\Delta t PDFs$ $A_f < 0.001 < 0.001 + 0.014 < 0.001 < 0.001$	fit bias	\mathcal{A}_{f}	± 0.005	± 0.005	± 0.005	± 0.005	± 0.005
fraction $\mathcal{A}_f \pm 0.002 \pm 0.006 < 0.001 \pm 0.006 \pm 0.002$ Background $\mathcal{S}_f < 0.001 \pm 0.002 \pm 0.030 \pm 0.002 \pm 0.001$ $\Delta t \text{ PDFs}$ $\mathcal{A}_f < 0.001 < 0.001 \pm 0.014 < 0.001 < 0.001$	Signal	\mathcal{S}_{f}	± 0.004	± 0.016	< 0.001	± 0.016	± 0.004
Background $S_f < 0.001 \pm 0.002 \pm 0.030 \pm 0.002 \pm 0.001$ $\Delta t \text{ PDFs}$ $A_f < 0.001 < 0.001 \pm 0.014 < 0.001 < 0.001$	fraction	\mathcal{A}_{f}	± 0.002	± 0.006	< 0.001	± 0.006	± 0.002
$\Delta t \text{ PDFs}$ $A_f < 0.001 < 0.001 + 0.014 < 0.001 < 0.001$	Background	\mathcal{S}_{f}	< 0.001	± 0.002	± 0.030	± 0.002	± 0.001
	$\Delta t \text{ PDFs}$	\mathcal{A}_{f}	< 0.001	< 0.001	± 0.014	< 0.001	< 0.001
Physics $S_f \pm 0.001 \pm 0.001 \pm 0.001 \pm 0.001 \pm 0.001$	Physics	\mathcal{S}_{f}	± 0.001	± 0.001	± 0.001	± 0.001	± 0.001
parameters $\mathcal{A}_f < 0.001 < 0.001 \pm 0.001 < 0.001 < 0.001$	parameters	\mathcal{A}_{f}	< 0.001	< 0.001	± 0.001	< 0.001	< 0.001
Total $S_f \pm 0.013 \pm 0.036 \pm 0.040 \pm 0.021 \pm 0.012$	Total	$\overline{\mathcal{S}_f}$	± 0.013	± 0.036	± 0.040	± 0.021	± 0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\mathcal{A}_{f}	$+0.045 \\ -0.023$	$+0.047 \\ -0.027$	$+0.046 \\ -0.026$	$+0.017 \\ -0.041$	± 0.012

Decay mode	$e \sin 2\phi_1 \equiv -\xi_f \mathcal{S}_f$	\mathcal{A}_{f}
$J/\psi K_S^0$	$+0.670\pm 0.029\pm 0.013$	$-0.015 \pm 0.021^{+0.045}_{-0.023}$
$\psi(2S)K_S^0$	$+0.738\pm 0.079\pm 0.036$	$+0.104 \pm 0.055^{+0.047}_{-0.027}$
$\chi_{c1}K_S^0$	$+0.640\pm0.117\pm0.040$	$-0.017 \pm 0.083^{+0.046}_{-0.026}$
$J/\psi K_L^0$	$+0.642\pm 0.047\pm 0.021$	$+0.019\pm0.026^{+0.017}_{-0.041}$
All modes	$+0.667\pm 0.023\pm 0.012$	$+0.006\pm 0.016\pm 0.012$

Origin	$\sigma(S_{J\!/\!\psiK^0_{\rm S}})$	$\sigma(C_{J\!/\!\psiK^0_{ m S}})$
Tagging calibration	0.034	0.001
Tagging efficiency difference	0.002	0.002
Decay time resolution	0.001	0.002
Decay time acceptance	0.002	0.006
Background model	0.012	0.009
Fit bias	0.004	0.005
Total	0.036	0.012

$$\begin{split} S_{J\!/\!\psi\,K_{\rm S}^0} &= 0.73 \pm 0.07\,({\rm stat}) \pm 0.04\,({\rm syst}), \\ C_{J\!/\!\psi\,K_{\rm S}^0} &= 0.03 \pm 0.09\,({\rm stat}) \pm 0.01\,({\rm syst}), \end{split}$$

TABLE III: Systematic errors in S_f and A_f in each f_{CP} mode and for the sum of all modes.

LHCb γ Systematics for B -> Dh

		J				
$A_{\rm ADS}^{K\pi\pi^0} = -0.20 \pm 0.27 \pm 0.04$		PID	PDFs	Sim	A _{instr}	Total
ADS(K) $A_{ADS(\pi)}^{K\pi\pi^{0}} = 0.438 \pm 0.190 \pm 0.011$	$\overline{A^{K\pi\pi^0}_{ ext{ADS}(K)}}$	3.4	39.6	8.7	5.7	41.1
$A_{\text{oGLW}(K)}^{KK\pi^0} = 0.30 \pm 0.20 \pm 0.02$	$A_{ ext{ADS}(\pi)}^{K\pi\pi^0}$	1.6	7.5	4.5	6.9	11.3
$A_{\text{oGLW}(K)}^{\pi\pi\pi^0} = 0.054 \pm 0.091 \pm 0.011$	$A_{qGLW(K)}^{KK\pi^0}$	5.1	10.2	18.8	2.1	22.1
$A_{\text{qGLW}(\pi)}^{KK\pi^0} = -0.030 \pm 0.040 \pm 0.005$	$A_{qGLW(K)}^{\pi\pi\pi^0}$	0.9	7.9	7.3	0.9	10.8
$A_{\text{qGLW}(\pi)}^{\pi\pi\pi^0} = -0.016 \pm 0.020 \pm 0.004$	$A_{ m qGLW(\pi)}^{KK\pi^0}$	0.8	2.2	1.2	4.4	5.1
$A_K^{K\pi\pi^0} = 0.010 \pm 0.026 \pm 0.005$	$A_{ m qGLW(\pi)}^{\pi\pi\pi^0}$	0.3	0.9	0.7	4.2	4.4
$R_{ ext{ADS}(K)}^{K\pi\pi^0} = 0.0140 \pm 0.0047 \pm 0.0021$	$A_K^{K\pi\pi^0}$	0.4	0.9	1.4	4.2	4.6
$R_{\text{ADS}(\pi)}^{K\pi\pi^{0}} = 0.00235 \pm 0.00049 \pm 0.00006$	$R^{K\pi\pi^0}_{ ext{ADS}(K)}$	0.3	2.0	0.6	0.1	2.1
$R_{ m oGLW}^{KK\pi^0} = 0.95 \pm 0.22 \pm 0.05$	$R^{K\pi\pi^0}_{ ext{ADS}(\pi)}$	0.02	0.05	0.02	0.01	0.06
$R_{\alpha GLW}^{\pi \pi \pi^0} = 0.98 \pm 0.11 \pm 0.05$	$R_{ m qGLW}^{KK\pi^0}$	23.8	24.9	36.5	7.7	50.8
$A_{ m Prod} = -0.0008 \pm 0.0055 \pm 0.0050,$	$R_{ m qGLW}^{\pi\pi\pi^0}$	8.1	20.7	42.5	5.3	48.3
, , , , , , , , , , , , , , , , , , ,	$A_{\rm Prod}$	0.3	0.3	0.5	5.0	5.0