Detector concepts for future colliders

SWHEPPS, Lake Aegeri, June 9, 2016
D. Contardo - IPN Lyon CNRS/IN2P3

- Plans for future colliders
 - Operation constraints for experiments
- Detector concepts for future colliders
 - Focus on HL-LHC ATLAS and CMS upgrade designs
 - Overview of technical solutions, limitations and trends for future R&D
- → Discussion of new techniques in P. Allport's presentation

Plans for future colliders

Future Colliders

- ILC: 2x11 km (Japan), 1.3 GHz SCRF cavities, 30 MV/m ≈ 500 GeV
- CLIC: 2x21 km (Geneva,) drive beams provide RF power, 12 GHz, 100 MV/m ≈ 3 TeV
- 2 push-pull experiments

Future Circular Collider (FCC)

- FCC-hh: pp-collider 80-100 km (Geneva) 16 T magnets
 ≃ 100 TeV (in 100 km)
- FCC-ee: e⁺e⁻ collider potential first step, Z, WW, ZH, tt energies max ≃ 350 GeV
- FCC-he: p-e option ≈ 3.5 TeV
- HE-LHC: with FCC-hh technology ≈ 30 GeV
- 2 Experiments (Interaction Regions)

And similar China project SPPC/CEPC

F. Gianotti's at FCC week in Rome, Apr. 2016

New particles mass range

~ 1.5 TeV

~ 50 TeV

2 experiments assumed for CepC, SppC and FCC-hh, 2 for FCC-ee L upgrade assumed for ILC and crab waist option for FCC-ee

HL-LHC 3000 ab⁻¹ \approx 200 M Higgs \approx 8 TeV \rightarrow 16
TeV at 30 TeV
HE-LHC

Note:

- □ Different definitions of "year" across projects: assumed physics data-taking time varies over 0.5-1.6x10⁷ s/year. Note: LHC 2012: 0.6x10⁷ s machine operation in physics with stable beams
- pp colliders: usable H events are ~ 10% of total cross-section due to large backgrounds
- H studies are only one of several physics goals

Higgs couplings measurements:

- □ Couplings to W, Z, g, c, b, τ: best measurements: 0.2-0.8% at FCC-ee (luminosity)
- □ Couplings to top: best measurements: few % ILC, CLIC, FCC-hh (heavy final state → energy)
- □ Self-couplings HH: best measurements: ~10 % at CLIC, FCC-hh (heavy final state → energy)

Future Colliders broad-brush planning

End of LHC Run 2 → 2019-20 recommendation from ES, others? US P5, Japan JAHEP, China

p-p collider beam parameters

parameter	FCC-hh		SPPC	HE-LHC*	(HL) LHC
collision energy cms [TeV]	100		71.2	>25	14
bunch spacing [ns]	25	25 (5)	25	25	25
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	20 - 30	12	>25	5 (7.5)
Mean collisions/crossing (PU)	170	<1020 (204)	400	850	140 (200)

- $5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} (170 \text{ PU})$:
 - → Similar conditions as for HL-LHC upgrades (can overcome present limitations)
- 30 x 10³⁴ cm⁻²s⁻¹ 1020(204) PU:
 - → ≥ O(10) x radiation tolerance compared to HL-LHC, a major challenge
 - → x 5 pileup will require high granularity (~ linear increase) and both charged and neutral particles high timing precision measurement for collision (vertex) association
 - → 5 ns bunch spacing would still require high granularity (to avoid out of time pileup in same channel), and also good timing precision

e⁺e⁻ colliders beam parameters

	ILC at 500 GeV	CLIC at 3 TeV
L (cm ⁻² s ⁻¹)	2x10 ³⁴	6×10 ³⁴
BX separation	554 ns	0.5 ns
#BX / train	1312	312
Train duration	727 µs	156 ns
Train repetition rate	5 Hz	50 Hz
Duty cycle	0.36%	0.00078%
σ_{x} / σ_{y} (nm)	474 / 6	≈ 45 / 1
σ_{z} (μ m)	300	44

• ILC - CLIC:

- → No pileup but large beam background
- → No radiation tolerance issues
- → Low integrated rates (duty cycle) allows full reconstruction event selection (triggerless) and power pulsing for low mass in tracker and high channel density in calorimeters
- → CLIC requires time stamps and short reconstruction windows

parameter	FCC-ee (400 MHz)				
Physics working point	Z	2	WW	ZH	tt _{bar}
energy/beam [GeV]	45	.6	80	120	175
bunch spacing [ns]	7.5	2.5	50	400	4000
Lumi./IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3

• FCC-ee:

- → high lumi. at Z mass requires 100kHz to register all Zs
- → power pulsing not possible

HL-LHC beam parameters

- Max luminosity at beginning of fills is $5 \times 10^{35} \text{ Hz/cm}^2$, operating scenarios are:
 - Nominal luminosity leveling at 5 x 10^{34} Hz/cm², \approx 140 PU
 - Design for luminosity leveling 7.5 x 10³⁴ Hz/cm², ≈ 200 PU
 - Integrated luminosity 2.5 ab⁻¹ in 10 years

Different scenarios/options considered:

- Full Crab-Crossing (nominal)
- ½ Crab-Cavities installed (stage 1) up to LS4
- 200 MHz RF (option to mitigate e-could)
- Crab-Kissing (option to mitigate pileup effect through smaller z-density

Nominal	Stage 1	200 MHz
255.9 (100%)	244.7 (95.6%)	235.7 (92.1 %)
307.0 (100%)	283.8 (92.5%)	265.2 (86.4%)

Integrated luminosity (fb⁻¹/year) 140 PU (top) and 200 PU (bottom)

Detector concepts for future colliders

FCC-hh detector Concept

- Min bias event similar to HL-LHC:
 5.4 → 8 charged/η <Pt> 0.6 → 0.8 GeV/c
- Higgs (highly boosted), HH, VBF/S process, and heavy new resonances:
 - ECAL 30 X_0 and HCAL 12 λ_i
 - Precise tracking $\leq 10\%$ at $p_T = 10 \text{ TeV}$
 - Calorimeter resolution EM(Had) 10(50)%
 (sampling) + ~ % (constant), up to eta = 4
 - Extend coverage up to $\eta = 6$ for jets (eg calorimeters and tracking)

Baseline design:

- → Twin solenoid ~ 6T (12 m, no yoke) assuming same tracker resolution as current HL-LHC detectors
- → Dipoles ~ 6T in forward region
- → Detector concepts at an early stage based on ATLAS & CMS Phase II designs

ILC-CLIC detector concepts

- Requirements for Higgs width, precise couplings, Z/W di-jet mass resolution
 - Vertex: resolution at IP of \approx 5 µm (10 GeV tracks in barrel)
 - Tracking: $\sigma(pt)/pt^2 \approx 2 \times 10^{-5} \text{ GeV}^{-1}$
 - Jets: $\sigma(E)/E \approx 3.5\%$ (in the range 50 250 GeV)
- LC: 2 detector concepts
 - SiD: 5 T solenoid full Si-tracker 1.2 m High Granularity Calorimeter
 - ILD: 3.4 T solenoid, Pixel vtx Si + TPC/MPGD tracker 1.8 m Calorimeter as for ILD

Note: FCC-ee detector concept similar to LC but smaller detector with 2T field

ILC-CLIC detector concepts

- Pixels extremely accurate and light resolution at IP ≃ /4 current LHC
 - Target $\lesssim 0.2\%$ X₀ per layer and $\simeq 3$ µm hit resolution with $\lesssim 25$ µm² pixels, thin sensors $\simeq 50$ µm, airflow cooling with lower power consumption (first layer close to IP $\lesssim 2$ cm)
 - Time window at CLIC ≈ 10 ns
 - Technologies:
 - Hybrid with thin sensors ~ 50 μm and thinned ASIC ~ 50 μm (fast for CLIC)
 - MAPs (ILC) HV-CMOS sensor + amplifier with capacitive coupling to digital ASIC through glue (fast for CLIC?) also allows smaller pixel size for reduced occupancy although not improving resolution
- Tracking, Pt resolution ≈ /10 HL-LHC
 - Small strip pitch or macro pixels, target 1% X_0 and \lesssim 10 μm hit resolution (needs charge sharing)
- Calorimetry resolution ≥ /3 HL-LHC (with PU)
 - High Granularity PFlow concept
 - ECAL = 23 X_0 , = 30 layers, = 0.5 x 0.5 cm² W/Si
 - HCAL \approx 7.5 λ_i , \gtrsim 50 layers, AnalogHCAL 3 x 3 cm² scintillator + SiPM or Semi-DigitalHCAL 1 x 1 cm² RPCs pads with multi-thresholds
 - ~ 80 M channels (x 12 CMS HGC)
 - Time window at CLIC ≈ 10 ns (EM) 100ns (Had.) and precision of ≈ 1 ns
- Muons with scintillator strips + WLS + SiPM or RPCs

ATLAS and CMS Phase II (HL-LHC) upgrades

Radiation and particle rates:

- Require new trackers, and also endcap calorimeters in CMS, new forward muons
- And replacement of most of the readout systems

CMS radiation dose map, neutron equivalent fluence and particle rates for luminosities of 3000 fb⁻¹ (integrated) and 5 x 10^{34} Hz/cm² (instantaneous)

ATLAS and CMS Phase II upgrades

• Upgrades designed to maintain Phase I (50 PU) performance at 140 PU - able to operate at 200 PU with smooth performance degradation

Displays of a tt event (left) and of a VBF H $\rightarrow \tau\tau$ (right) in 200 p-p collisions

ATLAS and CMS pileup mitigation

- High tracking efficiency is crucial for pileup mitigation and tracks are needed at hardware (trigger) event selection, as well as the full calorimeter granularities
- Ultimate PU mitigation would need precise timing measurement (of MIP and neutrals) to unambiguously associate both tracks and neutral energy clusters to each vertex (within precision limits)

z-t structure of sim. and reco. vertices in a 200 PU event, 3D uses the CMS Phase II tracker (w/o timing) and 4D includes an investigated timing layer with MIP precision of 20 ps

ATLAS upgrades for Phase-II

Trigger/DAQ

- 1 MHz Tracker readout w or w/o Region of Interest after 6 μs latency
- Full read-out at ~ 400 kHz with track-trigger after ~ 30 μs latency

Register up to ≈ 10 kHz after computing selection (30 GB/s)

Muon systems

- New electronics
- Some chambers replaced to improve resolution
- Muon tagging to η ≃ 4

Forward calorimeter

- Possibly new sFCAL with x 4 granularity
- 5D Si/W to cover 2.4 ≤ η ≤ 4

Liquid Argon and Tile calorimeter

New electronics

New Tracker

- Rad. tolerant, high granularity and light
- Extend coverage to $\eta \approx 4$

CMS Phase-II upgrades

Trigger/HLT/DAQ

- Track information in L1-Trigger (hardware)
- Trigger latency 12.5 μs readout rate 750 kHz

• HLT output 7.5 kHz

Barrel EM calorimeter

- New FE/BE electronics with improved time resolution
- Lower operating temperature (8°)

Muon systems

- New DT & CSC FE/BE
 electronics
- Complete RPC coverage 1.6 < η < 2.4
- Muon tagging 2.4 < η < 3

New Endcap Calorimeters

 Rad. tolerant - increased transverse and longitudinal segmentation precise timing capability

New Tracker

Beam radiation and luminosity
Common systems and infrastructure
Investigating hermetic MIP timing layer

- Rad. tolerant increased granularity lighter
- 40 MHz selective readout in Outer Tracker for Trigger
- Extended coverage to $\eta \approx 3.8$

ATLAS and CMS Silicon Trackers

- High granularity (≈ 4 to 6 x present trackers):
 - Pixel sizes in range ≈ 50 x 50 25 x 100 μ m² first layer(s) replaceable
 - Strip pitch ~ 75 to 90 μm and length ~ 2.5 to 5 cm length
- Light (improve resolution & reduce interactions and γ-conversions):
 - Design, new materials new cooling (CO₂) DC/DC, serial powering
- Implementation of tracking information in hardware trigger
- Extension of pixel coverage from η = 2.4 to η = 4

Silicon sensor R&D trends

HL-LHC:

- Thin planar sensors with improved bulk material n-in-p
 - Recent progress in 8" wafers and physically thin (200 μm) sensors
- 3D sensors alternative for higher radiation tolerance good candidate for 1st pixel layer (more expensive, 1st layer likely needs replacement due to ASIC rad. tol.)

pp and ee future colliders:

- Higher granularity lighter, with thinner sensors, smaller pitch, and fast
 - Hybrid technology need to improve bump bonding for size & cost
 - Monolithic (MAPS, HR/HV CMOS) light, not yet enough rad. tol., also relatively slow
 - 3D integration of sensors and electronic functions through SLID to sensors and TSV between ASICs functions analog/digital (good compromise for ee and pp colliders?)

Note this could also apply to Si-HGC (although lightness is not a criteria)

ATLAS Calorimeter upgrades

- ATLAS LAr calorimeters & Scint. Tile
 - need new readout electronics full granularity at hardware trigger
- Forward CALorimeter (3 ≤ η ≤ 5)
 - Ion space charge effect (due to peak luminosity) is investigated - option to replace with sFCAL - lower gap ~ 100 μm and x 2 better segmentation in η & Φ, or add mini-FCAL in front of current FCAL
- Thin High Granularity Si/W(Cu) Calo.
 - (2.5 \lesssim η \lesssim 4) is being investigated to further mitigate PU, including precise timing measurement (\lesssim 50 ps)

LAr is a good candidate for FCC-hh with higher granularity and rad. tol.

CMS Calorimeter upgrades

- High Granularity Si-Calorimeter inspired from CALICE with 5D shower measurement
 - Electromagnetic 28 layers of Si-W/Cu 25 X₀, 1λ_i
 - Front Hadronic 12 layers of Si/Brass 3.5 λ_i

Could also be candidate for FCC-hh (yet expensive)

- Back Hadr. 12 layers scintillator tiles/Brass 5.5 λ_i
 - Finger concept reduce light path to WLS
 - R&D in plastic scintillators (5-10 Mrad), complex depend on material, environment, rates
 - SiPM would benefit from higher rad. tol. an quantum efficiency)

Front End electronics ASIC R&D

HL-LHC:

 Chip complexity/design increased - benefit from deep-submicron technologies for lower pixel sizes, lower power consumption limited by radiation tolerance. - eg TSMC 65 nm technology more sensitive than 130 nm, needs specific design rules for analog functions and may only sustain 500 MRads (half HL-LHC innermost pixel layer)

ATLAS/CMS Pixel ASIC TSMC 65 nm

- Smaller Pixel size
- Larger chips ($\geq 2 \times 2 \text{ cm}^2$)
- Hit rates up ≈ 2-3 GHz/cm²
- Rad. Tol. up to 1 Grad, 10¹⁶ n/cm²
- High trigger rate and latency up to 1 MHz and \gtrsim 10 μ s
- Low power budget ≤ 1 W/cm²
- Low noise $\approx 1000 e^{-1}$

CMS HGCal FE ASIC TSMC 130 nm

- Shaping \approx 15 ns noise \approx 2000 e⁻¹ (after 3000 fb⁻¹)
- Low power ≤ 10 mW/ch
- Dynamic range 10 pC 10 bit ADC ≤
 100 fC and Time over Threshold
 (ToT) ≥ 80 fC
- Channel calibration better than 1%
- ToT time resolution ≤ 50 ps

pp future colliders:

 Radiation tolerance is a complex issue - deeper sub-micron technologies may not work? (and need long lead-time to learn and characterize) - 3D integration to separate analog and digital functions may help?

Front End Data transmission R&D trends

HL-LHC:

- GigBitTranciever (GBT) & Versatile Link
 - R&D on low power GBT (≈ 0.5 W) in 65 nm TSMC with 10 Gb/s data transmission
 - Still limiting factor in tracker readout for trigger purpose size is also important
- Rad. tol. of Versatile Link insufficient for inner radii (1st pixel layer, CMS HGC)
 - Need light high BW electrical link before OL transfer (twinax cables...)

pp future colliders:

- Increased bandwidth is highly desirable for trigger with outer trackers, pixels, HGC (full pixel readout at FCC max lumi. not possible would need 1000 TB/s (40 PB/s evt builder)
 - Silicon photonics (laser, wave guide, modulator, electronics grown on same Silicon)
 - Wireless transmission
 - Needs to be radiation tolerant.

Cooling and Mechanics R&D trends

Present:

- Two-Phase CO₂ cooling ≈ 50 kW and ≈ -35° plants
 - Low-T operation crucial to mitigate radiation damage low mass material needed
- Light mechanics with high conductive CF polymer skins and thermal foam core...
 - Low-weight crucial for multiple scattering, interactions & photon conversions (ALICE ITS (MAPs) is ≤ 1% X0 per layer) (also needs serial powering to minimize cabling)

pixel CF plate, foam, Ti pipes and barrel CF mechanics

CMS PS-module AICF frame

pp and ee future colliders:

- Cooling
 - Air-cooling (for low power ILC)- Micro-channel embedded in sensors (LHCb VELO) for pp colliders?
- New materials, glues, and assembly technics
 - CFRPs adhesive bonding, new thermal foams, phase change adhesives 3D printing

ATLAS and CMS Muon upgrades

- Muon systems are expected to sustain 3000 fb⁻¹
- Increased granularity, higher rate capabilities exploiting MPGDs in endcaps, new readout electronics (for trigger), coverage extended for μ -tagging to $\eta \lesssim 4$

R&D

- Tests at GIF++ to confirm margins and select eco-friendly gas mixtures x 3 HL-LHC currents
- New multi-gap technics to improve timing precision (both GEMs and RPCs)
- GEM and Micro-Megas for ILD TPC readout 1x6 mm² pads (GEMs for ALICE TPC upgrade)

- New Small Wheels small Thin Gap Chambers strips 2 cm → 3.2 mm (3mm pitch), thinner gap and Micro-Megas (0.5 mm pitch)
- Monitoring Drift Tubes reduced diameter
 30 mm & 200 Hz/cm² → 15 mm & 2 kHz/cm²

- Triple GEM 140 μm pitch, single mask and new assembly technique
- iRPC's few kHz/cm² low-ρ Bakelite/Glass multi-gap thinner electrodes higher gain FE time resolution ≤ 100 ps

Precise timing devices R&D trends

HL-LHC:

- ATLAS investigate Si/W calorimeter with Low Gain Avalanche Diodes (LGAD)
- CMS improves barrel ECAL FE, Si-HGC intrinsic precise timing Investigate MIP timing layer

HL-LHC and pp future colliders:

- Radiation tolerant technology with ≈ 10 ps precision
 - Crystals (LYSO...) + SiPMs appears feasible for rad. tol and precision
 - Low Gain Avalanche Diodes (LGAD) High Gain APDs, Micro-Megas with photocathods, MCP-PMT (w-cerenkov radiator or sec. emission) rad. tol. limited, final precision still to be demonstrated

FE/TDC and large clock distribution with precision and stability ≈ 10 ps

ATLAS and CMS Trigger upgrades

- Backend electronics follow COTs progress in FPGA, high bandwidth links, and ATCA
- Custom ASIC developments Associative Memories (track trigger pattern recognition)
 interest in 3D integration with FPGA (event cleaning and parameter fit)
- Computing follow commercial progress, slower by O(10) compared to increase in CPU
 needs R&D see back-up (ideal detectors would select event based on full reco.)

Conclusion

HL-LHC:

- Baseline technologies for HL-LHC detectors are identified/demonstrated, several innovations compared to current detectors - large scale and harsh environment operation experience will be useful for future experiments
- R&D now focused on finalizing specifications and prototyping/engineering 2
 to 4 years effort by start of production little room for new technologies (but
 opportunity for test)

• FCC-hh:

• Large scale detectors - likely need an order of magnitude in granularity and radiation tolerance to fully benefit from accelerator luminosity potential - major R&D effort needed, technology choices could depend on η -r to optimize performance versus radiation tolerance and cost (also needs large effort of simulation studies)

• ILC-CLIC-FCC-ee:

• Detectors require high granularity and highest possible resolution - several R&D beneficial to HL-LHC and FCC-hh (although rad. tol. is not an issue)

Additional information

HL-LHC ATLAS and CMS Online/Offline/Computing R&D

CPU need for online/offline reconstruction and analyses is expected to be roughly 30/80 times larger than for Run 2 at 140 PU

 \rightarrow Anticipating x 8 gain at constant resources (25%/year improvement) another factor of \approx 4/10 gain (online/offline) would be needed at 140 PU

R&D focuses on:

- Low power ARM processors, high performance GPU systems...
 - → Develop multi-threaded code data oriented for memory usage
- More broadly distributed resources to access opportunistic computing
 - → Develop portable kernels of reconstruction and simulation code
 - → Use cloud provisioning tools
- More efficient use of storage and data distribution
 - → Develop dynamic data placement to use remote services through Content Delivery Network techniques

ALICE upgrades in LS2

New Inner Tracking System (ITS) Muon Forward Tracker (MFT) improved pointing precision new Si tracker • less material -> thinnest tracker at Improved MUON pointing precision the LHC **MUON ARM** continuous Time Projection Chamber (TPC) readout New Micropattern gas electronics detector technology continuous readout **New Central Trigger** Processor (CTP) Data Acquisition (DAQ)/ High Level Trigger (HLT) new architecture on line tracking & data by St. Rossegger compression **New Trigger** TOF, TRD 50kHz Pbb event rate

Faster readout

Detectors (FIT)

LHCb upgrades in LS2

LHCb will upgrade already in LS2 and collect 50 fb-1 at 2×10^{33} cm- 2 s- 1 in runs 3 and 4

Software trigger operating at 40 MHz for 20 kHz of p-p events registered

→ Trigger/DAQ throughput at 4 TB/s (~ ATLAS/CMS at HL-LHC)

New electronics for all detectors and other major innovations:

- New Vertex Locator with pixels at 5.1 mm from beam - 55 x 55 μm² pixels - fluence of 8 x 10¹⁵ n_{eq}/cm² -2 Tbit/s data rate - light mechanics with micro-channels cooling
- Tracking with scintillating fibers
 (10000 km) and cooled SiPMs (-40°)

LHCb Scintillating Fiber Tracker R&D

3 stations, each 2.5% X/X0 - 4 plans (X-U-V-X) with ± 5° stereo angle - 50-75 μm resolution 3 M fibers Φ 250 μ m x 2.5 m (10 000 km) → Development for 3 Mrad in inner region → High precision assembly of fiber mats Readout with 128 SiPM array 250 µm pitch \rightarrow -40 °C cooling to sustain 1.2·10¹² neq. /cm2 → Work to improve Photo-Detection Efficiency

ALICE will upgrade already in LS2 to integrate ~ 10 nb⁻¹ at 6 x 10²⁷ cm⁻²s⁻¹ in runs 3 and 4

Register all Pb-Pb collisions \approx 50 kHz \rightarrow Fast online calibration and reconstruction with FPGAs and GPUs for data compression, from 1 TBps to 50 GBps storage (storage \approx ATLAS/CMS at HL-LHC)

New electronics for all detectors and other major innovations:

- New Internal Tracker System using Monolithic Active Pixels - 12.5 Gpix.
 30 x 30 μm² - ultra-light mechanics
- Use Micro-Pattern Gas Detectors for TPC readout (GEM and/or Micro-Megas)
- Trigger timing ≈ 20 ps resolution quartz Cerenkov with MCP-PMT

ALICE Inner Tracker System R&D

- Ultra light system to improve IP resolution by a factor ~ 3
 - 7 layers of Monolithic Active Pixels
 - \approx 10m² with 12.5 Gpix
 - 3 inner layer each 0.3% X/X0 from 20 to 40 mm
 - 4 outer layers of 1% X/X0 up to 400 mm

MAPs Technology

- Tower Jazz Technology (0.18 μm)
- Thin sensors ≈ 50 μm
- Pixels \approx 30 x 30 μ m²
- Radiation tolerance 10¹³ neq/cm²
- Binary readout

