EW & QCD results and prospects

Strategic Workshop on Particle Physics in Switzerland Kostas Theofilatos (**ETH Zurich**) June 9th, 2016 Lake Aegerisee

Introduction

This is not a review talk!

- A complete experimental summary on EW, QCD & PDFs can be found in Blois and Moriond 2016 conferences
- I've made a preselection of specifics topics that I thought might be good to mention in this workshop
- I also took ideas/slides from F. Cossutti, H. Jung, K. Rabbertz, J. Kunkle and S. Djuric

The EW global fit

- Assuming M_H @ **125 GeV** is the **SM Higgs**, fit becomes overconstraint & very predictive (indirect determinations)
- Overall SM fit is not bad but
 - The fit prefers a ~bit lighter SM Higgs predicting M_H = 93 ± 25 GeV
 - Tension between A_I(SLD) and A_{FB}^{0,b}, removing A_{FB}^{0,b} would make the fit worse predicting even lighter M_H

A closer look into the problem

world average from lepton colliders

AFB^b (LEP+SLD)

A_I (SLD+LEP)

Sin² \theta_{eff}^{lep}

0.23149±0.00016

0.23221±0.00029

0.23098±0.00026

- There is 3.2σ tension (p-value $\sim 0.2\%$)
- We need new measurements to shed light into this

Hadron colliders weigh in

More measurements are useful if they come with similar precision wrt those we want to cross-check

precision	
0.1%	SLD
0.1%	LEP
0.5%	ATLAS/LHCb
0.2%	D0/CDF
COMING SOON	CMS

http://arxiv.org/abs/1605.02719

Hadrons colliders start to rival LEP/SLD in terms of precision

Indirect Mw (CDF)

Mw in SM and MSSM

direct (world av.) indirect (fit)

 $80385 \pm 15 \text{ MeV}$ (0.02%)

80358 ± 8 MeV

(0.01%)

sets the bar for the LHC

SM (fit) prefers a bit lighter Wboson than current world average

MSSM prefers heavier W-boson than what SM does

http://arxiv.org/abs/1311.1663

The challenge for measuring Mw

Experimental challenge for $\delta M_W = 10 \text{ MeV}$

 $\delta p_T/p_T$ 0.01%

 $\delta u_{II}/u_{II}$ 0.1%

M_W can't be reconstructed per event. What to do ? Fit MC(M_W) templates to data. Observables of interest to fit :

- P_T charged lepton small experimental & large theory uncert. on $P_T(W)$
- $M_T = 2p_T E_T^{miss}(1-\cos\Delta\phi)$ has large experimental but smaller theory uncert.

Theory uncertainties on Mw

See Alessandro Vicini's talk for details on the theoretical challenges

The p_T recoil of W

- In theory, we need to merge regimes that are described by different approximations
- CMS measured $P_T(W)$ in **special LHC runs** with very low pile-up, but that doesn't allow to collect much data. $P_T(W)$ is corrected for leptonic reco efficiencies, which are measured with Z^0 [has ~10 lower cross section, precision is driven by L x $\sigma(Z)$]
- We can always ask for more special runs to reduce uncertainties, alternatively one can use the $P_T(Z)$ and extrapolate using theoretical ratio $k = P_T(W)^{theory}/P_T(Z)^{theory}$

PDFs for Mw

ATL-PHYS-PUB-2014-015

 $P_T(W)$ and $P_T(Z)$ "see" different views of the proton! Large PDF uncertainty if extrapolate $P_T(Z) \rightarrow P_T(W)$

Calibrations for Mw (CMS)

- Cut away one µ from the Z decay to mimic W, reconstruct M_Z^{W-like}
- Analysis features special "CMS tracker-only" MET reconstruction

Proof of principle that **MET (MT)** calibration can reach ~**14 (9) MeV** precision (from studies on **Mz**^{W-like})

Calibrations for Mw (CMS)

Calibrating Muons: muon energy scale for measuring M_W has reached the prerequisite precision

Prospects for a direct Mw

- ✓ Experiments are close-to-be-ready (sooner or later) ;-)
- P_T(W) ? use P_T(Z) to calibrate it or a direct P_T(W) measurement in data ? :-
- PDFs ? potential improvement by combining LHCb & CMS/ ATLAS data :-
- Theory uncertainties : `-(
- Other means for measuring Mw?:-X
 - Mangano & Melia used W-> hadrons to fully reconstruct m_W (concluded that is beyond reach of HL-LHC)

Open for challenge

Can this be investigated at the LHC? maybe, but this wouldn't be an easy measurement, a recent proposal [PLB 730 (2014) 149-154]

■ Confirming the tension might have implications for the nature of BSM physics (e.g., MSSM would not be able to explain the data)

Physics with boson-boson interactions

EW is a non-abelian theory

coupling	parameters	channel
$WW\gamma$	$\lambda_{\gamma}, \Delta k_{\gamma}$	$WW, W\gamma$
WWZ	$\lambda_Z, \Delta k_Z, \Delta g_1^Z$	WW,WZ
$ZZ\gamma$	h_{3}^{Z}, h_{4}^{Z}	$Z\gamma$
$Z\gamma\gamma$	h_3^γ, h_4^γ	$Z\gamma$
$Z\gamma Z$	$f_{40}^{\gamma}, f_{50}^{\gamma}$	ZZ
ZZZ	f_{40}^Z, f_{50}^Z	ZZ

Anomalous couplings parametrized with EFT

- Tests of the gauge structure of the SM inevitably mix Higgs with VV(V) see F. Riva's talk
- Some channels are yet-to-be observed, multibosons have not entered the precision frontier yet ...

Dibosons @ 13 TeV

ZZ (and WZ) were the first diboson results at 13 TeV, SM Higgs is a background in the VV cross section measurement

Wyy - first evidence ($>3\sigma$)

limits on aQGC [contributing mainly to $m_{\gamma\gamma}$ >300 GeV]

	σ^{fid} [fb]	σ^{MCFM} [fb]
Inclusive $(N_{\text{jet}} \ge 0)$		
$\mu\nu\gamma\gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)	
$e\nu\gamma\gamma$	$4.3^{+1.8}_{-1.6}$ (stat.) $^{+1.9}_{-1.8}$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
$\ell\nu\gamma\gamma$	6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	
Exclusive $(N_{jet} = 0)$		
$\mu\nu\gamma\gamma$	$3.5 \pm 0.9 \text{ (stat.)} ^{+1.1}_{-1.0} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$	
$e\nu\gamma\gamma$	$1.9^{+1.4}_{-1.1}$ (stat.) $^{+1.1}_{-1.2}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20
$\ell \nu \gamma \gamma$	$2.9^{+0.8}_{-0.7}$ (stat.) $^{+1.0}_{-0.9}$ (syst.) ± 0.1 (lumi.)	

interesting excess in ATLAS analysis

yy->WW - first evidence

- pp $\rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}\mu^{\pm}e^{\mp} p^{(*)} @ 7.8 \text{ TeV}$
- Combined significance of 3.4σ
- Limits on aQGC

http://arxiv.org/abs/1604.04464

slide stolen from A. Khukhunaishvili Blois2016

Hints of EW Wy

This gauge boson vertex has been probed for first time using Wy + 2j (VBS)

hints (2.6σ) for EW Wy, more data needed for first observation

CMS-SMP-14-011

Limits on anomalous couplings

- Many channels still dominated by statistical uncertainty
- We can place limits however to large anomalous couplings
- 8 TeV data (20 fb-1) are still more constraining than the 13 TeV 2015 data

Prospects for multiboson studies

- More data are needed and they will come soon!
- Detector upgrades:
 - Forward jets needed in vector boson fusion
 - W/Z hadronic tagging for boosted/high p_T fat-jets
 - Machine learning to dig out some of the very rare processes

Ratios between VV process is expected to reach 5% theoretical accuracy, **enabling precision** in this field of studies Run II/HL-LHC, **photons** will play an important role and are difficult to deal experimentally

http://arxiv.org/abs/1510.08451

QCD in less than 6 slides (next-to-impossible)

Inclusive jet data (13 TeV)

Soon we will have to face 3 TeV dijets!

Dominant exp uncertainty: Jet Energy Scale, gets larger at high P_T

Studies with Di-jets @ 3 TeV

- For $P_T^{hard} = 3 \text{ TeV} -> P_T^{soft} \sim = 30$ GeV (will soon be measurable)
- Extreme di-jets will offer a testbed to study resummation

this topic has been highlighted to me by Hannes Jung

The QCD coupling constant

From jet cross-sections to as

as is the SM coupling known with least precision

NNLO for pp->jets will enable better usage of the jet data (currently not used in PDG as world average).

Jet data probe highest p_T/x

It's not only QCD, NLO EW effects become important at high jet P_T (factorized approach on showered / fixed-order ?)

Gluon PDF uncertainty is reduced* for low/high x using jet data

^{*}NB other than jet data needed for g(x) in order to avoid circularity jets->g(x) & jets-> a_S

Photon (inclusive)

Photon data can be used for PDFs/as, but NNLO is also missing for this process

V+jets @ NNLO

V+jets, V=W, Z are candles for studying P_T(jet), N_{jets}, PDFs and test new MC developments (T event shapes, merging NLO +PS ...)

Newly available NNLO for V+1j enables precision in V+jets studies, paving the way for as extraction in V+jets?

QCD x EW corrections in ME+PS

State-of-the-art EW corrections bring better data/theory agreement but still some discrepancy with the CMS data (CMS-SMP-14-005)

 $R(Z/\gamma)$ data at used to study different possible implementations of QCDxEW corrections in general purpose MCs

DM mono-jet searches used NLO electroweak correction as systematic uncertainty entering the fit as a constrained nuisance parameter

Summary & Outlook

Year	∫ L dt [fb ⁻¹]	A new landscape will open	
2015	3	for precision measurements	
2016	30	Measurements can probe BSN even if BSM is not visible a	
2018	100	tree-level	
2024	400	EW precision at LHC implies good understanding of QCD,	
2035	3000	the two are perplexed!	

QCD with jets and V+jets is a rich field for $a_s(Q)$, PDFs, ME+PS merging, QCD x EW MC

Multibosons are thirsty for more data and will benefit a lot from HL-LHC and detector upgrades

Bonus slides

QCD/EW studies: What-is-it

Cross section measurements

```
pp \rightarrow jj(jjjjjj)
```

$$pp \rightarrow V(+jets)$$

Inference of SM parameters

 $\sin^2\theta_W^{eff}$ ($\sin^2\theta_W$), m_W

 $a_{S}(Q)$

aTGCs, aQGCs

PDFs

MC modeling

ME+PS merging

UE, MPI, tuning

QCD/EW corrections

Beyond the SM

anomalous couplings extreme QCD precision frontier

Leptonic A_{FB} at LHC

- A_{FB} is a key EW observable for inferring sin²Θ_W & indirect M_W
- AFB is diluted at LHC, because quark direction is unknown!
- q-direction is strongly correlated with rapidity of I+

A_{FB} becomes stronger at large |y_{lep}|, Phase II upgrades will empower ATLAS/CMS with more precision

Leptonic A_{FB} at LHC

- AFB measurements dominated by PDF uncertainties
- Double differential $d\sigma/d(mll, Y)$ measurements will come with more data