

Top quark physics – status and prospects

Richard Hawkings (CERN)

SWHEPPS 2016 meeting, Aigerisee, 8/6/16

- Overview of top quark physics after LHC run-1, with first run-2 results
 - Top-pair (tT) production, including tT+X
 - Single top production
 - Top quark mass
 - Selected top quark properties .. e.g. rare decays
 - Outlook for LHC run-2 and beyond
- Current 'state of the art' and prospects for improvement
 - Rather selective show 'example' measurements from ATLAS and CMS
 - Not covering searches for BSM physics involving top quarks in the final state
- Full details of all results:
 - ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
 - CMS: http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html

Introduction

- Why is top quark physics interesting?
 - Top quark fits into the 3-generations of quark doublets
- But it is very heavy 40x bottom quark
 - Same mass scale as W, Z and Higgs bosons connection to EW symmetry breaking?
 - Now we know $m_H=125$ GeV, top Yukawa coupling is almost exactly 1... coincidence?

$$y_{\rm t} = \sqrt{2}m_{\rm t}/v \simeq 1$$

- SM could be valid up to Plank scale, meta-stable?
- Top decays quickly, as a bare quark: t→Wb
 - Lifetime of ~10⁻²⁵ s too short to form hadrons (10⁻²⁴ s)
- Heaviest particle in SM, copiously produced
- Also shorter than spin de-correlation time (10-21 s)
 aviest particle in SM, copiously produced
 Cross-section 0.2-0.8 nb at LHC energies (7-13 TeV)
 - Laboratory for QCD studies at highest energies
 - Important background and/or decay mode for BSM searches involving new heavy states

Top-pair phenomenology

Main production process: top-pair via gg or qqbar:

LO diagrams NLO, NNLO also important

- Cross-section ~250 pb @ 8 TeV, 830 pb @ 13 TeV
 - c.f. 7 pb in p-pbar production at Tevatron
- BR(t→Wb)=99.8%, signatures depend on W decay
 - Dilepton channels (ee $\nu\nu$ bb, $\mu\mu\nu\nu$ bb, e $\mu\nu\mu$ bb) are cleanest, but only a few % of ttbar events
 - Especially $e\mu$, free of background from $Z\rightarrow ee/\mu\mu$
 - Lepton+jets (30%) $e/\mu \nu$ bbqq
 - Significant background from W+jets, single top, multijet
 - All-hadronic (46%): bbqqqq
 - Challenging final state hard to trigger, multijet b/g
 - Remainder: states involving at least one tau decay

Top-pair cross-section measurements

- Cleanest measurement from dileptons (eμ)
 - Final states with 1 (2) b-jets ~90% (97%) pure tT
 - ATLAS double tag method to reduce systematics

$$N_1 = L\sigma_{t\bar{t}} \; \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{\mathrm{bkg}}$$

 $N_2 = L\sigma_{t\bar{t}} \; \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{\mathrm{bkg}}$

- Fit for cross-section σ and jet+b-tag efi $\varepsilon_{\rm b}$
- Experimental systematics ~2% (run-1), 3% (run-2)
 - Also integrated luminosity (~2%), LHC E_{beam} (1.7%)
- Similar results from CMS, using a more complex profile likelihood fit with kinematic information
- Measurements in I+jets channel
 - e/μ , E_T^{miss} , >=4 jets, b-tagged jet requirements
 - E.g. CMS template fit to $m(\mu+b-jet)$ distribution
 - Total uncertainty of 6-7% (tT modelling, jet energies)
- Also measurements in all-hadronic channel, and in final states involving hadronic taus

Top-pair production cross-section

- Agreement at Tevatron, LHC run-1 and now run-2 energies
 - Experimental precision (eμ) ~3-4% per expt. at 7-8 TeV, 6-7% so far at 13 TeV
 - Typically dominated by luminosity and ttbar modelling uncertanties
 - Theory NNLO+NNLL 4-5% PDFs, 3% scales, ∓3% for ±1 GeV on top mass
- Some modest improvements may be possible average experiments, updated PDFs
 8th June 2016

Cross-section ratios, and top quark mass

- Cross-section ratios reduce uncertainties
 - E.g. $R_{t\bar{t}/Z} = \frac{\sigma_{t\bar{t}}}{0.5 \left(\sigma_{Z \to ee} + \sigma_{Z \to \mu\mu}\right)}$
 - ATLAS ±9% measurement with early 2015 data (limited by statistics and tT modelling)
 - Constrain PDFs typically high-x gluon
 - To come: Double ratios combining different processes and beam energies
- Predicted cross-section depends on m_t
 - The **pole** mass theoretically well-defined
 - Check consistency with direct measurements, for different PDF assumptions

ATLAS: PDF4LHC envelope 7+8 TeV combined

$$m_t^{\text{pole}} = 172.9_{-2.6}^{+2.5} \text{ GeV}$$

Differential cross-section measurements

- Measure normalised differential cross-sections
 - As functions of $p_T(t)$, $p_T(tT)$, m(tT), y(tT) etc.
 - Requires full reconstruction of tT system kinematics
 - I+jets final state generally better only one neutrino
 - Dilepton can also be used with approximations
 - Correct for resolution effects using unfolding
 - Aim to measure a **fiducial** cross-section corresponding to detector acceptance
 - Or correct to full phase space model dependent
- Measurements at 7, 8 and now 13 TeV
 - Probe detailed description of tT kinematics in MC
 - - Important input for parameter tuning
 - But persistent problems in describing p_T(t)
 - Also impacts estimates of top backgrounds in many searches (particularly SUSY)

Comparison with NNLO predictions

- Recent progress in calculating top differential distributions at NNLO
 - E.g. Czakon, Haymes, Mitov, PRL 116 082003 (arXiv:1511.00549)
 - Better agreement for $p_T(t)$, not quite so good for m(tT)
 - Cannot yet incorporate these predictions into full MCs, except by reweighting

Boosted topologies

- At high m(tT) / p_T(t), top decays are boosted
 - 3 jets (bqq) from hadronic top start to merge
 - Use jet substructure techniques to reconstruct a a large R (R=1.0), high p_T, high mass jet
 - Apply substructure selections to resolve internal jet structure (subjets, splitting scale)

- Unfolding techniques as for resolved selection
- Again, most MCs predict harder p_⊤ spectrum
 - Important to improve modelling in this regime for searches exploiting jet substructure

Top-pair + heavy flavour production

- Extensive studies of tT+extra jets
 - Generally well-modelled by NLO and LO multi-leg generators, with tuned parton shower parameters
 - Production of tT+extra b-jets particularly important
 - Irreducible background to ttH with H→bb
- Study cleanly with dileptonic tT with >=3 b-jets
 - Small statistics, e.g. O(100) events with >=4
 b-tagged jets in 8 TeV data samples
 - Backgrounds from tT + mistaged light/c jets
 - Larger samples of tT+1 extra b-tagged jet
 - $tT+g(\rightarrow bb)$ in one jet, or 2^{nd} b outside acceptance
- MC models with extra b-jets from parton shower
 - Typically underestimate rate for >=2 extra b-jets
 - PowHel NLO ttbb calculation does better
- Differential studies of m_{bb} , ΔR_{bb} for >=2 extra-b
 - Statistically-limited, MCs overestimate at low △R

Top pair + vector boson production

- ttbar+W and ttbar+Z: similar signatures
 - Final states with 2, 3, 4 leptons, (b) jets, low statistics
 - Significant contributions from 'fake' leptons
 - ATLAS 8 TeV: ttW: 5σ, ttZ: 4.2σ
 - CMS 8 TeV: ttW: 4.8σ, ttZ: 6.4σ

2	ATLAS	★ ATLAS Best Fit
	$500 = \sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$	ATLAS 68% CL ATLAS 95% CL
	<u> </u>	+ NLO prediction*
))	400	tt Theory uncertainty tt Theory uncertainty
ļ	E	,,]
	300	
	200	
	- \	*))]
	100	
		=
	ļ , <u> </u>	* Madgraph5_aMC@NLO calculation =
	0 100 200	300 400 500 600
		ttW cross section [fb]

Process	tī decay	Boson decay	Channel	$Z \to \ell^+ \ell^-$
	$(\ell^{\pm} v b)(q \bar{q} b)$	$\ell^{\mp} \nu$	OS dilepton	no
tīW [±]	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$qar{q}$	OS dilepton	no
11 44	$(\ell^{\pm} \nu b)(q \bar{q} b)$	$\ell^{\pm} v$	SS dilepton	no
	$(\ell^{\pm} \nu b)(\ell^{\mp} \nu b)$	$\ell^{\pm} v$	Trilepton	no
	$(\ell^{\pm} \nu b)(\ell^{\mp} \nu b)$	$qar{q}$	OS dilepton	no
tīZ	$(q\bar{q}b)(q\bar{q}b)$	$\ell^+\ell^-$	OS dilepton	yes
li Z	$(\ell^{\pm} \nu b)(q \bar{q} b)$	$\ell^+\ell^-$	Trilepton	yes
	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^+\ell^-$	Tetralepton	yes

Single top production

Electroweak process involving the Wtb vertex – 3 sub-processes

- Cross-sections are proportional to |V_{tb}|² ≈1 can interpret as constraints on |V_{tb}|
 - Values given for √s=13 TeV
- Typically look for semileptonic decay of W: t→blv
 - t-channel: additional forward 'spectator' jet from the outgoing light quark
 - Wt-associated production: additional $W(\rightarrow l\nu)$ like tT but with one fewer b-jet
 - Process interferes with tT production at NLO (Wtb→WWbb vs. tT→WWbb)
 - s-channel: $l\nu$ +2 high p_T b-jets, low x-sec at LHC due to sea antiquark in initial state
- Significant backgrounds from top-pair production, and W/Z+(b) jets
 - Sophisticated analysis techniques (multivariate, matrix element) needed

t-channel single top

 $p_{T}(t+\bar{t})$ (GeV)

- Multivariate techniques based on e.g.
 - Light jet rapidity, m($l\nu b$), angular information
 - Control regions with extra jets, non-b-tagged jets to constrain tT and W+jets contribution
- Achieve signal purities >50%
 - Start to measure differentially , e.g. p_T(t)
 - Results so far agree with MC predictions
- Ratio $R_t = \sigma(t)/\sigma(t-bar)$ sensitive to u/d in proton
 - Many systematics cancel R_t stat-dominated
 - Constrain PDFs with full run-1 and run-2 datasets

Wt associated production

- Signal concentrated in dilepton+1 b-tag jet
 - Combine multiple kinematic quantities in MVA to separate from tT with one 'missed' b-jet
 - Use 2-jet events with 1 or 2 b-tags to constraint the dominant top-pair background
 - Only limited signal purity can be achieved
 - Wt signal in ATLAS and CMS only fully established with 8 TeV datasets

- Combined ATLAS+CMS 8 TeV result with precision of 16%
 - Agrees with NLO+NNLL prediction with 6% uncertainty

s-channel single top

Richard Hawkings

- Small signal with e/μ , E_T^{miss} , 2 high p_T b-tagged jets
 - Veto on second lepton with p_T>5 GeV to reduce tT
 - Use 'matrix element' (ME) method to calculate perevent signal probability based on kinematics
 - Using theoretical ME for each signal and b/g process

$$P(S|X) = \frac{\sum_{i} \alpha_{S_i} \mathcal{P}(X|S_i)}{\sum_{i} \alpha_{S_i} \mathcal{P}(X|S_i) + \sum_{j} \alpha_{B_j} \mathcal{P}(X|B_j)}$$

- Fit P(S|X) dstribution in selected sample
 - Lepton charge used to increase W+jets discrimination
 - Validation in W+jets and tT dominated regions
- Results in 3.2 σ signal, c.f. expected 3.9 σ
 - Cross-section measurement of 4.8±0.8+1.8-1.6 pb
 - Consistent with theoretical prediction of 5.6±0.2 pb
 - Improvement over previous BDT-based analysis on same data sample (5.0±4.3 pb)

Events

Inclusive cross-section [pb]

Summary of single top production

Measurements from 7, 8 TeV; first measurements from 13 TeV

- Measurements in agreement with NLO+NNLL predictions
 - Experimental precision of 9-14% for t-channel, worse for Wt and s-channel
 - Theoretical precision ~5%
 - Room for improvement with larger run-2 datasets, more differential measurements

Top quark mass – what are we measuring?

- Measuring mass of a coloured particle
 - Experimentally, √(E²-p²) from final state particles (leptons, jets, E_T^{miss})
- But there are radiative corrections ...
 - In principle accounted for in the NLO generators and the parton shower
 - Top quark-self energy corrections
- Colour reconnection to rest of the event
 - Only phenomenological models (UE data)
- Need the pole mass for electroweak fit
 - Corresponding to propagation of free particle
 - But suffering from renormalon ambiguity
 - Expect O(1 GeV) difference between pole mass and MC mass definitions
 - But ~10 GeV difference to short-distance masses like MS-bar scheme
- Experimental precision now ~0.5 GeV ... 8th June 2016 Richard Hawkings

Measurements via direct reconstruction

- Most precise measurements from I+jets
 - Require b-tagged jets, kinematic fits to choose or weight jet combinations (goodness of fit)
 - W→qq decay allows jet energy scale to be constrainted in situ using known m_w (2D fit)
 - Various techniques to combine this with external input on jet energy scale (from γ+jet, Z+jet etc)
 - ATLAS also constrains b-jet scale in situ (3D fit)
 - Precision limited by jet energy scale (incl. b)
- Dilepton measurement two neutrinos
 - CMS uses AMWT technique to weight solutions of the tT system kinematics
 - ATLAS uses fit to m(lb) still sensitive to m_t
 - Precision limited by b JES and tT modelling
- All-hadronic channel also useful results
 - Large combinatoric background, constrain JES with W decays

Direct top mass measurement results

- Impressive precision now reached
 - CMS (7+8 TeV): ∆m/m=0.28% (0.5 GeV)
 - ATLAS (7+8 II): ∆m/m=0.40% (0.7 GeV)
 - Tevatron still competitive: 0.36% (0.6 GeV)
 - Some 'tension' between CMS and Tevatron
 - Very precise, but what do we measure?

ATLAS new: 7 TeV+8 TeV II: 172.84±0.34±0.61 GeV

Probing QCD effects

- Study m_t vs. kinematic variables with 8 TeV data
 - Look at m_t <m_t> to look for biases which are not modelled by the MC generators
 - Top kinematics (e.g. p_T(t)) and variables which might be sensitive to colour reconnection
 - E.g. ∠R between jets
 - So far, no indications of mismodelling important to continue with higher statistics at 13 TeV

Simulation	χ^2	Standard deviation
MG + PYTHIA 6 Z2*	17.55	0.10
MG + PYTHIA 6 P11	37.68	1.73
MG + PYTHIA 6 P11noCR	31.57	1.15
POWHEG + PYTHIA 6 $Z2^*$	19.70	0.20
POWHEG + HERWIG 6	76.48	4.84
MC@NLO + HERWIG 6	20.47	0.24
SHERPA	46.79	2.56

Alternative mass measurements

- Many other observables can be defined
 - Mass of J/ ψ +I system in t \rightarrow bW \rightarrow J/ ψ ($\rightarrow \mu\mu$)+X + I ν
 - Branching fraction 3 10⁻⁴ need large sample
 - No jets used in selection different systematics
 - Statistically limited: ±3 GeV with 20 fb⁻¹ at 8 TeV
 - Systematics ~1 GeV, dominated by p_T(t) and b-decay modelling – promising for future
- Top mass from m(ttj) in tT+1 jet events
 - Diff. x-sec shape $R(\rho_s)$ with ρ_s ~1/ m_{ttj} sensitive to m_t $\frac{1}{2}$

$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}}} \frac{d\sigma_{t\bar{t}+1\text{-jet}}}{d\rho_s} (m_t^{\text{pole}}, \rho_s), \quad \rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}+1\text{-jet}}}}$$

- Mass m_t here corresponds to pole mass
- Distribution predicted at NLO+PS accuracy, unfold experimental results

$$m_t^{\text{pole}} = 173.7 \pm 1.5 \text{ (stat.)} \pm 1.4 \text{ (syst.)}_{-0.5}^{+1.0} \text{ (theory) GeV}$$

- Many other 'alternative' methods being pursued
 - None close to precision of direct reco ..yet
 8th June 2016
 Richard Hawkings

Top charge asymmetry

- q qbar→t tbar exhibits a small asymmetry
 - Zero at LO, but interference terms at NLO produce small positive asymmetry
 - Top quark follows direction of incoming q
 - Leads to ~10% forward-backward asymmetry at Tevatron (p-pbar)
 - Historical discrepancy with prediction ...
 - LHC has symmetric pp, and ttbar production dominated by gg not q qbar
 - Top more fwd/bwd, anti-top central

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \qquad \Delta|y| = |y_t| - |y_{\bar{t}}|$$

- 1% asymmetry in SM
- Measurements in I+jets and dileptons
 - Precision ~0.5%, results agree with SM
- Also asymmetry in boosted topologies
 - More q-qbar, more sensitive to BSM

Exotic top decays

- FCNC: t→Zq by looking for Z→II in top decays (3 lepton final state)
- t→gq impossible to see in decay, produces anomalous single top production: qg→t
- $t \rightarrow \gamma q$: look for single top production in association with a photon
- t→Hq: look for Higgs (various decay modes) produced in top-pair production
- t \rightarrow H⁺b: look for enhancement of τ (H⁺ $\rightarrow \tau \nu$), or qq peak with mass> m_W (H⁺ \rightarrow cs)
- Only limits so far ... will benefit from larger statistics of LHC run-2

Summary – the story so far

- Precision top quark physics at LHC Run-1, with 100x Tevatron dataset
 - Detailed studies of tT production, inclusive and differential cross-sections
 - NNLO predictions are needed to match experimental precision (below ~5%)
 - Will need NNLO differential predictions, including top decays, to fully exploit new data
 - Single top t-channel differential measurements, Wt established, s-chan on the way
 - Start of precision physics with single tops, e.g. mass measurement
 - Associated production of W, Z, heavy flavour with tT becoming established
 - Important foundations for ttH associated production a key goal for LHC run-2
 - Many top production/decay properties measured (e.g spin-corl, W polarisation)
 - No evidence for non-SM behaviour, or unexpected decay modes
 - Top mass measurements now overtaking Tevatron but what do they mean?
 - Explore alternative measurement strategies, and expt./theory. collaboration to make progress

Summary – future prospects

- LHC run-2 has started, with 2-3 fb⁻¹ in 2015, 20-30 fb⁻¹ expected this year
 - Already seeing first 13 TeV x-sec measurements (tT, t-channel, tT+W/Z)
 - Hope for ~100 fb⁻¹ before next LHC shutdown (LS2) 15x more tops than run-1
- Full program of measurements ahead
 - With present techniques, many measurements will be systematically limited
 - Harsher environment (pileup) than run-1 new ideas and analysis strategies will be needed to fully exploit this sample
 - At 13 TeV, boosted techniques (e.g. tagging top jets) will become more important
- Looking further ahead to HI-LHC: 1-3 ab⁻¹ sample another jump in statistics
 - Ultimate precision on top mass: ~0.3 GeV in well-defined scheme?
 - Precise measurements of top couplings (g, γ , W, Z, H) possible BSM contribⁿs
 - Extending reach of rare decay searches (e.g. FCNC)
 - Very challenging experimental environment for precision measurements, and large statistics in boosted topologies...
- Exciting challenges ahead in top physics...