Future Hadron Colliders: Accelerator Challenges

SWHEPPS: Strategy Workshop on High-Energy Particle Physics in Switzerland, 9.6.2016 Bernhard Auchmann, PSI/CERN

Main References

[1] FCC Week, April 11-15, 2016 in Rome: <u>http://indico.cern.ch/event/438866</u>
[2] 1st Review of the EuroCirCol WP 5: <u>http://indico.cern.ch/event/516049</u>

470 Participants; 48 parallel and 6 plenary sessions + poster session.

Overview

- Strategic motivation
- Ongoing Collider Studies: FCC-hh, HE-LHC, and SPPC
- Infrastructure
 - Injectors
 - Civil Engineering
 - Power Consumption
- R&D Programs
 - Magnet Systems
 - Superconductor
 - Synchrotron Radiation / Beam Vacuum
 - Beam Dump
 - Operational Cycle and Availability

Infrastructures

Overview

- Strategic motivation
- Ongoing Collider Studies: FCC-hh, HE-LHC, and SPPC
- Infrastructure
 - Injectors
 - Civil Engineering
 - Power Consumption
- R&D Programs
 - Magnet Systems
 - Superconductor
 - Synchrotron Radiation / Beam Vacuum
 - Beam Dump
 - Operational Cycle and Availability

Infrastructures

FCC Design Study – Motivation

- European Strategy for Particle Physics 2013:
 - "... to propose an ambitious post-LHC accelerator project ..., CERN should undertake design studies for accelerator projects in a global context, ... with emphasis on proton-proton and electron-positron high-energy frontier machines ... coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures, ..."

• US P5 (DOE/NSF) recommendation 2014:

"....A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window...."

• ICFA statement 2014:

- ".... ICFA supports studies of energy frontier circular colliders and encourages global coordination....."
- Update to the European Strategy for Particle Physics in 2019/20!
 [1] M. Benedikt, F. Gianotti.

DOE .. Department of Energy, NSF .. National Science Foundation ICFA .. International Committee for Future Accelerators

FCC Design Study – Milestones

Status: April, 2016

[1] M. Benedikt.

Now is the time to plan for the period 2035 - 2040

Overview

- Strategic motivation
- Ongoing Collider Studies: FCC-hh, HE-LHC, and SPPC
- Infrastructure
 - Injectors
 - Civil Engineering
 - Power Consumption
- R&D Programs
 - Magnet Systems
 - Superconductor
 - Synchrotron Radiation / Beam Vacuum
 - Beam Dump
 - Operational Cycle and Availability

Infrastructures

FCC-hh Layout and Parameters

parameter	FCC-hh		SPPC	HE-LHC*	(HL) LHC			
collision energy cms [TeV]	100		71.2	>25	14			
dipole field [T]	16		16		20	16	8.3	
circumference [km]	100		54	27	27			
# IP	2 main & 2		2	2 & 2	2 & 2			
beam current [A]	0.5		1.0	1.12	(1.12) 0.58			
bunch intensity [10 ¹¹]	1	1 (0.2)	2	2.2	(2.2) 1.15			
bunch spacing [ns]	25	25 (5)	25	25	25			
beta* [m]	1.1	0.3	0.75	0.25	(0.15) 0.55			
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	20 - 30	12	>25	(5) 1			
events/bunch crossing	170	<1020 (204)	400	850	(135) 27			
stored energy/beam [GJ]		8.4	6.6	1.2	(0.7) 0.36			
synchrotr. rad. [W/m/beam]		30	58	3.6	(0.35) 0.18			
		\setminus						

[1] M. Benedikt.

nominal/ultimate

Parameter table delivered to EU.

HE-LHC

- High-energy hh collider in the LHC tunnel:
 - baseline 16-T FCC technology for >25 TeV or
 - 20 T LTS+HTS magnets for 33 TeV [3].

• 5-T HTS inserts are studied as part of FCC design study.

Feather-2 magnet, Roebel bar cable from REBCO tape [4].

PAUL SCHERRER INSTITUT

[3] L. Rossi, E. Todesco, Conceptual Design of 20-T Dipoles for High-Energy LHC, https://arxiv.org/pdf/1108.1619
[4] J. Van Nugteren and G. Kirby, CERN.

SPPC

AsiaHEP/ACFA 2016:

"... The past few years have seen a growing interest in a large radius circular accelerator ... ultimately for proton-proton collisions at the high-energy frontier. We encourage the effort lead by China in this direction, and look forward to ... the technical design ..."

- Pre-study, R&D and preparation work
 - Pre-study 2013-20
 - R&D 2020-30
 - Engineering Design
 2030-35
 - Construction
 2035-42
 - Data taking 2042 -

20-T Magnet Working Group in China

The CEPC-SPPC ring sited in Qinhuangdao, 50 km and 100 km options .

[1] Q. Xu.

ACFA .. Asia Committee for Future Accelerators AsiaHEP .. Asia-Pacific High Energy Physics Panel

Overview

- Strategic motivation
- Ongoing Collider Studies: FCC-hh, HE-LHC, and SPPC
- Infrastructure
 - Injectors
 - Civil Engineering
 - Power Consumption
- R&D Programs
 - Magnet Systems
 - Superconductor
 - Synchrotron Radiation / Beam Vacuum
 - Beam Dump
 - Operational Cycle and Availability

CERN Accelerator Complex

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-Tof- Neutrons Time Of Flight

FCC-hh Injector

Several options under study:

- LHC at 3.3 TeV with >5x faster ramp rate.
 - Extraction in Points 2 and 8 (now ALICE, LHCb).
 - 4 km of superconducting-magnet transfer lines.
 - Availability and operational cost as question marks.
- SPS+ at >1 TeV, 7 km with ~6-T fast-ramping superconducting magnets
 - Challenging but feasible magnet system.
- HE Booster in FCC tunnel
 - injection to booster from current SPS.
 - super-ferric magnet system (superconducting cable in iron-dominated magnet) to reduce power consumption.
- Other options
 - Super-ferric booster in LHC tunnel.
 - Injection at 450 GeV from SPS
- Experiments in LHC to learn about operation with large energy swing.

13

FCC Civil Engineering

• Tunnel optimization tool wrt. cost and risk.

Alignment Sharts Query	Alignment Location		ogy Interse	ected by Shafts	Shaft Depths			
		Shaft Depth (m)		Geology (m)				
Choose alignment option	· ·	Point	Actual	Quaternary	Molasse	Urgonian	Calcaire	
Turnel elevation at centre 261mACI		A	304					
		в	266					
Grad. Params		с	257					
Azimuth (*): -20		D	272					
Slope Angle x-x(%): 0.05 Slope Angle y-y(%): 0		Е	132					
			and the second second					
LOAD SAVE CALCULATE		F	392					
LOAD SAVE CALCULATE		F	392 354					
LOAD SAVE CALCULATE Alignment centre Y: 1108403 Y: 1108403		F G H	392 354 268					
LOAD SAVE CALCULATE Alignment centre Y: 1108403 CP 1 CP 2		F G H I	392 354 268 170					
LOAD SAVE CALCULATE Alignment centre X: 2499731 Y: 1108403 CP 1 CP 2 Angle Depth Angle Depth		F G H J	392 354 268 170 315					
LOAD SAVE CALCULATE Alignment centre X: 2499731 Y: 1108403 CP 1 CP 2 Angle Depth Angle Depth LHC -64* 220m 64* 172m		F G H J	392 354 268 170 315					
LOAD SAVE CALCULATE Alignment centre Y: 1108403 CP 1 CP 2 Angle Depth Angle Depth LHC -64* 220m 64* 172m SPS 242m 241m 241m		F G H J K	392 354 268 170 315 221					
LOAD SAVE CALCULATE Alignment centre Y: 1108403 CP 1 CP 2 Angle Depth Angle Depth LHC -64* 220m 64* 172m SPS 242m 241m 241m		F G I J K	392 354 268 170 315 221 260					

Geology Intersected by Tunnel Geology Intersected by Section

Alignment Profile

CERN

FCC Civil Engineering

Total Amberg cost/risk adjusted for circumference

[1] J. A. Osborne

Power Consumption

- Target power consumption: 500 MW (~3.2x LHC target).
- Three 400 kV powering substations in the region.

• LHC experience used to refine estimates.

Overview

- Strategic motivation
- Ongoing Collider Studies: FCC-hh, HE-LHC, and SPPC
- Infrastructure
 - Injectors
 - Civil Engineering
 - Power Consumption
- R&D Programs
 - Magnet Systems
 - Superconductor
 - Synchrotron Radiation / Beam Vacuum
 - Beam Dump
 - Operational Cycle and Availability

EuroCirCol WP5

- The European Circular Energy-Frontier Collider Study
- European Union's H2020 Framework Programme under grant agreement no. 654305.
- Task WP5: Construction design of a 16-T FCC main dipole.
- Ongoing: survey of design options
- Next steps:
 - Detailed technical design.
 - Refined cost model.
- PSI joins EuroCirCol effort with CHART/FCC funding.

Magnet Types

Cosine Theta Coil

Highest efficiency. Difficult stress management and coil end design.

Block Coil

On paper simpler end design. Slightly lower efficiency.

Common Coil

Simple coil ends. Higher stored energy. Slightly lower efficiency. Canted Cosine Theta (Tilted Helices) Simple manufacturing, low coil stress. Lowest efficiency.

[1] L. Brouwer, S. Caspi, [2] M. Duharte, S. Farinon, C. Lorin, J. Munilla, M. Sorbi, F. Toral, Q. Xu

Historical View

Still a long and hard road ahead for 14.3-m-long 16-T dipole. (Longest Nb₃Sn magnet to date: LARP LQ quad with 3.7 m.)

Nb₃Sn Conductor Goals

		Nb ₃ Sn
Wire diameter	mm	~ 1
Non-Cu Jc (16 T, 4.2 K)*	A/mm ²	≥1500
μοΔ Μ(1 Τ, 4.2 K)	mT	≤ 150
σ(μοΔΜ) (1 Τ, 4.2 K)	%	≤ 4.5
Deff	μm	≤ 20
RRR	-	≥ 150
Unit length	km	≥5
Cost	Euro/kA m**	~ 5
*Je ~ 600 A/mm ² *Curpon Cu ~ 1	** 16 T, 4.2 K	

[1] A. Ballarino, [2] B. Bordini

Progress as Reported by Industry

Progress of jc (16 T, 4.2 K) within the last year

Conductor Cost

- LHC: conductor cost 1/3 of magnet cost.
- FCC: expected conductor cost >1/2 of magnet cost.
- Problem: for required Nb₃Sn conductor, FCC *is* the market.
- To reach target cost of 5 $kA^{-1}m^{-1}$ need to find savings >2/3 of current cost.
- Cost drivers:
 - Capital investment for large-scale production
 - Billet size
 - Competition
 - Raw-material cost, out of our control
 - Hedge large variations (over past 10 years x4 in Nb, x7 in Sn, x5 in Cu).
 - Process cost

PAUL SCHERRER INSTITUT

- Conductor performance active R&D
 - increase by artificial pinning, smaller grain size, etc.
- Unit length / production waste
 - 1 km UL produces ~30% scrap. (Current designs have ~5 km UL!)
- Performance margins

Determined by volume of demand.

Necessary Design Margins

Excessive training constitutes an energy limitation of the collider. How much margin at nominal current?

[5] G. Apollinari, S. Prestemon, A. V. Zlobin, Progress with High-Field Superconducting Magnets for High-Energy Colliders, Annu. Rev. Nucl. Part. Sci. 2015.65:355-377.
[6] M. Pojer, M. Solfaroli, http://cern.ch/hcc, 2015.

Loadline Margin and Conductor Use

- 20% vs. 10% margin at 16 T, 1.9 K, implies 2/3 higher conductor cost.
- Baseline target: 14%.

US/European Programs on Magnet R&D

EuroCirCol

CERN FCC technology program,

CHART contribution at PSI.

US Labs' High-Field Magnet Programs

PAUL SCHERRER INSTITUT

Further efforts for EU/US coordination under way.

[5] <u>http://cern.ch/fcc/eurocircol</u>, 2016.

Overview

- Strategic motivation
- Ongoing Collider Studies: FCC-hh, HE-LHC, and SPPC
- Infrastructure
 - Injectors
 - Civil Engineering
 - Power Consumption
- R&D Programs
 - Magnet Systems
 - Superconductor
 - Synchrotron Radiation / Beam Vacuum
 - Beam Dump
 - Operational Cycle and Availability

Infrastructures

Synchrotron Radiation and Vacuum

- Arc synchrotron-radiation heat load, $\sim \frac{E^4}{R^2}$, increases from 0.17 W/m (LHC) to 28.4 W/m (FCC-hh).
- → Beam-screen temperature must be higher (40-60 K instead of 5-20 K at LHC) for cryo efficiency. Cooling channel diameter must increase.
- → Higher temperature implies higher equilibrium vapour pressure.
- \rightarrow Increased pumping slots.
- Studies:
 - SYNRAD and MOLFLOW simulations done.
 - Optimized impedance.
 - Lower SEY by laser ablation.
 - Avoidance of UFOs.
 - Test in ANKA beam line.

[1] F. Perez

Bunch Spacing

- Production of 5 ns bunch spacing
 - Today by debunching and modulation at 200 MHz in PS.
 - Considered a "dirty" option:
 - beam from extraction-kicker gap lost in ring.
 - no bunch-to-bucket transfer.
 - "Clean" option Superconducting Proton Linac to replace PS Booster.
- Estimated integrated luminosity per day equivalent to that in the 25-ns scenario.
- Heat load from electron-cloud under control if SEY \leq 1.1.
- Studies needed for instability limits.
- More machine-development studies at LHC to come.

[1] E. Shaposhnikova, X. Buffat, L. Mether

Operational Cycle and Availability

Summary

- Baseline parameters of FCC-hh (and ee) are fixed.
- Infrastructure layout fixed, cost- and schedule estimates under way.
- Magnet R&D is picking up momentum. US to get more involved.
- Numerous accelerator technologies are being studied anew – positive impact expected for LHC and HL-LHC.
- Authoritative cost estimates for the overall project only in 2018.

