







## History of Particle Accelerators — Livingston Plot









# Accelerator R&D Towards Highest Energies

Rasmus Ischebeck, Paul Scherrer Institut

# How to Accelerate Charged Particles

#### Assume:

- an ultrarelativistic particle of charge e
- moving along the z axis
- accelerated by a plane electromagnetic wave that propagates at an angle 9 to the z axis



#### How to Accelerate Charged Particles

not

#### Then:

Position of the electron

$$\vec{r}(t) = \left(\begin{array}{c} 0\\0\\ct \end{array}\right)$$

• Electric field

$$E_{\parallel} = \sin \theta \cos \left( \omega t - \frac{z}{2\pi\lambda \cos \theta} \right)$$

• Energy gradient

$$\frac{\Delta W}{L} = \frac{\int_{L} eE_{\parallel} dz}{L} = \frac{\int_{L} \sin \vartheta \cos(kz(1 - \sec \vartheta)) dz}{L}$$

$$= \frac{\sin \vartheta \sin(kL(1 - \sec \vartheta)) \frac{1}{k(1 - \sec \vartheta)}}{L} \xrightarrow{L \to \infty}$$



#### Lawson-Woodward-Palmer Theorem

- Every wave in far field can be written as a superposition of plane waves
- The Lawson-Woodward Theorem states:
  - the total acceleration
    - of ultrarelativistic particles
    - by far-field electromagnetic waves
  - is zero
- ⇒ Need near-field structures

Woodward, J. IEE 93 (1947) Lawson, IEEE Trans. Nucl. Sci. 26 (1979) Palmer, Part. Accel. 11 (1980)



# Limits to the Accelerating Field

- Normal-conducting accelerators
  - Breakdown on the surface



- Superconducting accelerators
  - Critical magnetic field



http://hyperphysics.phy-astr.gsu.edu/hbase/solids/scbc.html

# Possibilities for Accelerating Structures

|   | Structure       | max.<br>Field (V/m) | Power Sources |                                                         |
|---|-----------------|---------------------|---------------|---------------------------------------------------------|
|   | Superconducting | 5 · 10 <sup>7</sup> | solid state   | electron beams:<br>klystrons                            |
|   | Metallic        | 2 · 10 <sup>8</sup> | solid state   | electron beams:<br>klystrons or<br>integrated structure |
| 0 | Dielectric      | 10 <sup>9</sup>     | laser         | electron beams                                          |
|   | Plasma          | ≥10 <sup>11</sup>   | laser         | electron beams                                          |

Plus: Inverse FEL, disposable structures, excited atoms, muon colliders

# Laser-Based Acceleration



## Laser as a source of electromagnetic fields



#### Laser Acceleration (1961)

Koichi Shimoda, Applied Optics 1 (1), 33 (1961)



Fig. 1. Schematic diagram of an electron linear accelerator by optical maser.

# Semiconductor Industry



#### Dielectric Accelerator Structures

- > Using much higher frequencies: THz to optical
- > Using dielectrics (e.g. SiO<sub>2</sub>)
- > Advantages: higher damage threshold
  - ⇒ Higher accelerating fields, up to ~GV/m
- > Generate the electromagnetic field
  - > Cherenkov radiation from an electron beam
  - > Laser
- > Confine the field
  - > Photonic band gap



#### Acceleration Experiments with a Dielectric Structure



Peralta et al., Nature **503**, 91 (2013)

# Acceleration Experiments with a Dielectric Structure

> Depending on their phase, some electrons are accelerated, some are decelerated



Peralta et al., Nature **503**, 91 (2013)

#### Planar Structures: Measurements



#### > Joel England

#### Dielectric Accelerators — Current Research Topics

- > Achievements of recent years
  - > Proof-of-principle experiments demonstrating accelerating fields of GV/m
  - > Efficient generation of the electromagnetic fields
- > Ongoing research projects
  - > Accelerating of high-charge bunches
  - > Staging of accelerating structures
  - > Damage threshold of the materials (laser, electrons)
- > Future research topics
  - > Efficient coupling of the electromagnetic fields
  - > Confinement by photonic band gap structures
  - > Acceleration of ions
  - > Efficiency of particle acceleration

# Efficiency of particle acceleration



Siemann, PRST-AB 7, 061303 (2004)



## Plasma Wakes - Theory

- > Unlike electromagnetic waves in vacuum, plasma wakes can have a longitudinal electric field
- > Tajima & Dawson, PRL, 43, 267(1979)
- > Linear plasma wake:
  - > Limit:



$$\lambda_p \approx \sqrt{\frac{10^{15} \text{cm}^{-3}}{n_p}} \quad \text{mm}$$

$$E_0 = \frac{4\pi \,\varepsilon_0 \,c \,m_e}{e} \,\omega_p \quad \approx \sqrt{\frac{n_p}{\text{cm}^{-3}}} \quad \frac{\text{V}}{\text{cm}}$$

#### Plasma Wakes - Theory

- > Above this limit: non-linear wakes, "Blow-out regime"
- > Fields can be calculated only with numerical methods



- > Typical wavelength: 50 µm
- > Accelerating fields up to 50 GV/m

# Plasma Wakes - Reality



# **Energy Doubling**

> Plasma length: 85 cm

> Density:  $2.7 \cdot 10^{23} \,\mathrm{m}^{-3}$ 

> Incoming energy: 42 GeV

> Peak energy: 85±7 GeV



Blumenfeld et al., Nature 445, 741 (2007)

# Measurement of Electromagnetic Fields



Malte Kaluza, private communication

# Measurement of Electromagnetic Fields

> Measurement of Plasma Wake (b/w) and Injected Electrons (color)



# Staging of Two Accelerators



## Drive the wake by a Proton Beam



#### Plasma Accelerators — Current Research Topics

- > Achievements of recent years
  - > Proof-of-principle experiments demonstrating accelerating fields of tens of GV/m
  - > Meter-scale plasmas that allow high energy gain
  - > Characterization of plasma wakes
- > Ongoing research projects
  - > Staging of accelerating structures
  - > Control energy spread
  - > Efficiency of particle acceleration
- > Future research topics
  - > Efficient generation of plasma wakes with proton beams
  - > Match electron beam into plasma with micrometer precision

# **Energy Efficiency**



## Applicability of Plasma Wakefield Accelerators to HEP



- > Arnd Specka, Ecole Polytechnique Paris
- > Roman Walczak, Uni Oxford
- > Meeting Paris October 2016

## History of Particle Accelerators — Livingston Plot



Rasmus Ischebeck > Accelerator R&D Towards Highest Energies. SWHEPPS, 2016–05–09

#### An Unfair Comparison



Rasmus Ischebeck > Accelerator R&D Towards Highest Energies. SWHEPPS, 2016–05–09