A few words on FCC-ee

100 TeV pp collider and High Luminosity 90-305 GeV e+ecollider form the core of the CERN FCC design study.

(from the CERN FCC brochure)

Future Colliders broad-brush planning

End of LHC Run 2 \rightarrow 2019-20 recommendation from ES, others? US P5, Japan JAHEP, China

Similar time scales. Important bonus of circular colliders is the synergy with the pp colliders.

common layouts for hh & ee

lepton collider parameters

parameter	FCC-ee					LEP2
physics working point	Z		ww	ZH	tt _{bar}	
energy/beam [GeV]	45.6		80	120	175	105
bunches/beam	30180	91500	5260	780	81	4
bunch spacing [ns]	7.5	2.5	50	400	4000	22000
bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	4.2
beam current [mA]	1450	1450	152	30	6.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3	0.0012
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	3.34
synchrotron power [MW]	100					22
RF voltage [GV]	0.4	0.2	0.8	3.0	10	3.5
rms cm <i>E</i> spread SR [%]	0.03	0.03	0.05	0.07	0.10	0.11
rms cm <i>E</i> spread SR+BS [%]	0.15	0.06	0.07	0.08	0.12	0.11

FCC-ee technologies, time lines, analysis highlights Frank Zimmermann KET workshop, Munich, 2 May 2016

FCC-ee luminosity per IP

c.m. energy [GeV]

FCC-ee technologies, time lines, analysis highlights Frank Zimmermann KET workshop, Munich, 2 May 2016

KET workshop, Munich, 2 May 2016

RF system R&D lines

400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)

- Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC
- R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-H, ee-tt and ee-W

- Baseline options 400 MHz Nb/Cu @4.5 K, **◄—**► 800 MHz bulk Nb system @2K
- **R&D:** High Q₀ cavities, coating, long-term: Nb₃Sn like components

FCC-ee discovery potential

of course discovery depends on the goodwill of nature; a few things that FCC-ee could do and discover (if they exist):

EXPLORE 10 TeV energy scale (and beyond) with Precision Measurements

~20-50 fold improved precision on many EW quantities (equivalent to factor 5-7 in mass)

m_{Z,} m_W, m_{top} , sin² θ_w^{eff} , R_b , α_{QED} (m_z), α_s (m_z), Higgs and top couplings

DISCOVER a violation of flavour conservation

- ex FCNC (Z $\rightarrow \mu \tau$, e τ) in 5 10¹² Z decays. + flavour physics (10¹² bb events!) also see M. Bicer et al., "First Look at the Physics Case of TLEP," JHEP01 (2014) 164

DISCOVER dark matter as «invisible decay» of H or Z

DISCOVER very weakly coupled particle in 5-100 GeV energy scale such as: right-handed neutrinos, dark photons etc...

FCC-ee expected sensitivity to heavy RH neutrinos

SHIP

NB: very large detector caverns for FCC-hh may allow for very large FCC-ee detector (R=15 m?) leading to improved reach at lower masses

FCC-ee technologies, time lines, analysis highlights Frank Zimmermann KET workshop, Munich, 2 May 2016 Blondel, Graverini, Serra, Shaposhnikov

Summary

- FCC-ee combines several new concepts invented and successfully demonstrated during the last 20 years
- FCC-ee offers extremely high luminosities in the energy range from Z to ttbar; combined w. precise energy calibration at Z & W
- FCC-ee may serve as spring board for the FCC-hh 100 TeV pp collider, bringing a large tunnel, infastructure, cryogenics, time, addt'l physics motivations + performance goals for FCC-hh
- FCC-ee technology is ready; ongoing R&D aims at further increasing efficiency, making FCC-ee a truly "green accelerator"
- optics fulfils all requirements, matched to FCC-hh footprint, baseline luminosity performance is predicted with confidence
- FCC-ee would provide superb discovery potential & a great first step towards 100 TeV; FCC-ee/hh = powerful combination at EF

